scholarly journals A New Parametric Life Family of Distributions: Properties, Copula and Modeling Failure and Service Times

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1462
Author(s):  
Mansour Shrahili ◽  
Naif Alotaibi

A new family of probability distributions is defined and applied for modeling symmetric real-life datasets. Some new bivariate type G families using Farlie–Gumbel–Morgenstern copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula and Renyi’s entropy copula are derived. Moreover, some of its statistical properties are presented and studied. Next, the maximum likelihood estimation method is used. A graphical assessment based on biases and mean squared errors is introduced. Based on this assessment, the maximum likelihood method performs well and can be used for estimating the model parameters. Finally, two symmetric real-life applications to illustrate the importance and flexibility of the new family are proposed. The symmetricity of the real data is proved nonparametrically using the kernel density estimation method.

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 194
Author(s):  
M. El-Morshedy ◽  
Fahad Sameer Alshammari ◽  
Yasser S. Hamed ◽  
Mohammed S. Eliwa ◽  
Haitham M. Yousof

In this paper, a new parametric compound G family of continuous probability distributions called the Poisson generalized exponential G (PGEG) family is derived and studied. Relevant mathematical properties are derived. Some new bivariate G families using the theorems of “Farlie-Gumbel-Morgenstern copula”, “the modified Farlie-Gumbel-Morgenstern copula”, “the Clayton copula”, and “the Renyi’s entropy copula” are presented. Many special members are derived, and a special attention is devoted to the exponential and the one parameter Pareto type II model. The maximum likelihood method is used to estimate the model parameters. A graphical simulation is performed to assess the finite sample behavior of the estimators of the maximum likelihood method. Two real-life data applications are proposed to illustrate the importance of the new family.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Author(s):  
Muhammad Aslam ◽  
Zawar Hussain ◽  
Zahid Asghar

In this article, we propose a new family of distributions using the T-X family named as modified generalized Marshall-Olkin family of distributions. Comprehensive mathematical and statistical properties of this family of distributions are provided. The model parameters are estimated by maximum likelihood method. The maximum likelihood estimation under Type-II censoring is also discussed. Two lifetime data sets are used to show the suitability and applicability of the new family of distributions. For comparison purposes, different goodness of fit tests are used.  


2021 ◽  
Vol 9 (4) ◽  
pp. 942-962
Author(s):  
Mohamed Abo Raya

This work introduces a new one-parameter compound G family. Relevant statistical properties are derived. The new density can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewedwith one peak”. The new hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and “decreasing-constant”. Many bivariate types have been also derived via different common copulas. The estimation of the model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family is illustrated by means of two real data sets.


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2635-2652 ◽  
Author(s):  
M. El-Morshedy ◽  
M.S. Eliwa

In this paper, a new generator of continuous distributions called the odd flexible Weibull-H family is proposed and studied. Some of its statistical properties including quantile, skewness, kurtosis, hazard rate function, moments, incomplete moments, mean deviations, coefficient of variation, Bonferroni and Lorenz curves, moments of the residual (past) lifetimes and entropies are studied. Two special models are introduced and discussed in-detail. The maximum likelihood method is used to estimate the model parameters based on complete and upper record data. Adetailed simulation study is carried out to examine the bias and mean square error of maximum likelihood estimators. Finally, three applications to real data sets show the flexibility of the new family.


2018 ◽  
Vol 55 (4) ◽  
pp. 498-522
Author(s):  
Morad Alizadeh ◽  
Mahdi Rasekhi ◽  
Haitham M. Yousof ◽  
Thiago G. Ramires ◽  
G. G. Hamedani

In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.


2018 ◽  
Vol 41 (1) ◽  
pp. 109-135 ◽  
Author(s):  
Filippo Domma ◽  
Abbas Eftekharian ◽  
Ahmed Afify ◽  
Morad Alizadeh ◽  
Indranil Ghosh

This paper introduces a new four-parameter lifetime model called the odd log-logistic Dagum distribution. The new model has the advantage of being capable of modeling various shapes of aging and failure criteria. We derive some structural properties of the model odd log-logistic Dagum such as order statistics and incomplete moments. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimation are discussed. We prove empirically the importance and flexibility of the new model in modeling real data.


2018 ◽  
Vol 33 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Muhammad Aslam ◽  
Zawar Hussain ◽  
Zahid Asghar

Abstract In this article, a new family of distributions is introduced by using transmutation maps. The proposed family of distributions is expected to be useful in modeling real data sets. The genesis of the proposed family, including several statistical and reliability properties, is presented. Methods of estimation like maximum likelihood, least squares, weighted least squares, and maximum product spacing are discussed. Maximum likelihood estimation under censoring schemes is also considered. Further, we explore some special models of the proposed family of distributions and examined different properties of these special models. We compare three particular models of the proposed family with several existing distributions using different information criteria. It is observed that the proposed particular models perform better than different competing models. Applications of the particular models of the proposed family of distributions are finally presented to establish the applicability in real life situations.


2019 ◽  
Vol 8 (2) ◽  
pp. 70 ◽  
Author(s):  
Mustafa C. Korkmaz ◽  
Emrah Altun ◽  
Haitham M. Yousof ◽  
G.G. Hamedani

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two simulation studies. A new regression model is proposed based on a special member of the proposed family called, the log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four applications to real data sets are given to demonstrate the usefulness of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document