scholarly journals A Comparative Study of Infill Sampling Criteria for Computationally Expensive Constrained Optimization Problems

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1631
Author(s):  
Kittisak Chaiyotha ◽  
Tipaluck Krityakierne

Engineering optimization problems often involve computationally expensive black-box simulations of underlying physical phenomena. This paper compares the performance of four constrained optimization algorithms relying on a Gaussian process model and an infill sampling criterion under the framework of Bayesian optimization. The four infill sampling criteria include expected feasible improvement (EFI), constrained expected improvement (CEI), stepwise uncertainty reduction (SUR), and augmented Lagrangian (AL). Numerical tests were rigorously performed on a benchmark set consisting of nine constrained optimization problems with features commonly found in engineering, as well as a constrained structural engineering design optimization problem. Based upon several measures including statistical analysis, our results suggest that, overall, the EFI and CEI algorithms are significantly more efficient and robust than the other two methods, in the sense of providing the most improvement within a very limited number of objective and constraint function evaluations, and also in the number of trials for which a feasible solution could be located.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


Author(s):  
Christian Kanzow ◽  
Andreas B. Raharja ◽  
Alexandra Schwartz

AbstractA reformulation of cardinality-constrained optimization problems into continuous nonlinear optimization problems with an orthogonality-type constraint has gained some popularity during the last few years. Due to the special structure of the constraints, the reformulation violates many standard assumptions and therefore is often solved using specialized algorithms. In contrast to this, we investigate the viability of using a standard safeguarded multiplier penalty method without any problem-tailored modifications to solve the reformulated problem. We prove global convergence towards an (essentially strongly) stationary point under a suitable problem-tailored quasinormality constraint qualification. Numerical experiments illustrating the performance of the method in comparison to regularization-based approaches are provided.


2006 ◽  
Vol 169 (3) ◽  
pp. 1108-1127 ◽  
Author(s):  
Ş.İ. Birbil ◽  
G. Bouza ◽  
J.B.G. Frenk ◽  
G. Still

Sign in / Sign up

Export Citation Format

Share Document