scholarly journals A Reduction of Peak-to-Average Power Ratio Based Faster-Than-Nyquist Quadrature Signals for Satellite Communication

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 346
Author(s):  
Sergey B. Makarov ◽  
Mingxin Liu ◽  
Anna S. Ovsyannikova ◽  
Sergey V. Zavjalov ◽  
ILya Lavrenyuk ◽  
...  

The increase in the throughput of digital television and radio broadcasting (DVB) channels can be achieved due to application of signals with a compact spectrum and a relatively small peak-to-average power ratio (PAPR). The reason is the usage of traveling wave tubes (TWT) for amplifying and transmitting signals from a satellite repeater in DVB-S2X systems. At the same time, given that the bandwidth allocated for transmission should be used as efficiently as possible, a high reduction rate of out-of-band emissions level is required. The most effective solution in this direction is the transition to spectrum-economic signals, such as optimal Faster-Than-Nyquist (FTN) signals, which can provide a certain reduction rate of the out-of-band emissions level and minimum acceptable PAPR. This article proposes a method for obtaining optimal FTN pulses, which have symmetry in time domain, with specified PAPR and reduction rate of out-of-band emissions for the quadrature phase shift keying (QPSK) and offset quadrature phase shift keying (OQPSK). The possibility of synthesizing signals with OQPSK modulation is presented theoretically for the first time. Optimal FTN signals can provide PAPR reduction by at most 3 dB and outperform known root raised cosine (RRC) pulses. The simulation model adopts an architecture for quadrature generation of optimal FTN signals with OQPSK modulation with blocks for adjustable pre-amplification, clipping, and power amplification. The proposed signals can be used to increase the spectral and energy efficiencies of satellite broadcasting systems, such as DVB-S2/S2X, as well as low-rate return channels of interactive broadcasting systems with a frequency resource shortage.

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar ◽  
Hemant Rathore

AbstractIn this research study, different Peak Average Power Ratio (PAPR) based reduction techniques, namely, A-Law companding, µ-Law companding, Clipping & Filtering and Clipping are analyzed for Filter Band Multi-Carrier (FBMC) with different transmission systems such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 64-QPSK and 64-Quadrature Amplitude Modulation. It is estimated that the PAPR reduction can benefit by using clipping technique in FBMC.


2020 ◽  
Vol 18 (9) ◽  
pp. 090602
Author(s):  
Shaowen Lu ◽  
Yu Zhou ◽  
Funan Zhu ◽  
Jianfeng Sun ◽  
Yan Yang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Christopher M. Rondeau ◽  
J. Addison Betances ◽  
Michael A. Temple

This work provides development of Constellation Based DNA (CB-DNA) Fingerprinting for use in systems employing quadrature modulations and includes network protection demonstrations for ZigBee offset quadrature phase shift keying modulation. Results are based on 120 unique networks comprised of seven authorized ZigBee RZSUBSTICK devices, with three additional like-model devices serving as unauthorized rogue devices. Authorized network device fingerprints are used to train a Multiple Discriminant Analysis (MDA) classifier and Rogue Rejection Rate (RRR) estimated for 2520 attacks involving rogue devices presenting themselves as authorized devices. With MDA training thresholds set to achieve a True Verification Rate (TVR) of TVR = 95% for authorized network devices, the collective rogue device detection results for SNR ≥ 12 dB include average burst-by-burst RRR ≈ 94% across all 2520 attack scenarios with individual rogue device attack performance spanning 83.32% < RRR < 99.81%.


Sign in / Sign up

Export Citation Format

Share Document