scholarly journals Study on Water Inflow Variation Law of No.1 Shaft Auxiliary Shaft in HighLiGongshan Based on Dual Medium Model

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 930
Author(s):  
Jiabin Li ◽  
Yonghong Wang ◽  
Zhongsheng Tan ◽  
Wen Du ◽  
Zhenyu Liu

When the fracture is not developed and the connectivity is poor, the original single medium simulation cannot meet the accuracy requirements. Now, the seepage simulation of fractured rock mass has gradually developed from equivalent continuous medium to dual medium and multiple medium. However, it is still difficult to establish the connection between a discrete fracture network model and a continuous medium model, which makes it difficult to simulate the influence of fracture location on the seepage field of rock mass. As the excavation direction of the shaft is vertically downward, the surrounding strata are symmetrical around the plane of the shaft axis, which is different from the horizontal tunnel. Taking the auxiliary shaft of the No.1 Shaft in HighLiGongshan as the engineering background, combined with Monte Carlo methods and DFN generator built in FLAC3D5.01, a discrete fracture network is generated. Based on the dual medium theory, MIDAS is used to optimize the modeling of each fracture group. At the same time, the concept of “Fracture Weakening area” is introduced, and the simulation is carried out based on a fluid–solid coupling method. It is found that the simulation effect is close to the reality. The water inflow increases with the increase of shaft excavation depth, and the water inflow at the end of excavation is nearly three times larger than the initial value. Combined with Legendre equation, a new analytical formula of water inflow prediction is proposed. It is found that this analytical formula is more sensitive to permeability and has a greater safety reserve.

2020 ◽  
Author(s):  
Mohammadreza Jalali ◽  
Zhen Fang ◽  
Pooya Hamdi

<p>The presence of fractures and discontinuities in the intact rock affects the hydraulic, thermal, chemical and mechanical behavior of the underground structures. Various techniques have been developed to provide information on the spatial distribution of these complex features. LIDAR, for instance, could provide a 2D fracture network model of the outcrop, Geophysical borehole logs such as OPTV and ATV can be used to investigate 1D geometrical data (i.e. dip and dip direction, aperture) of the intersected fractures, and seismic survey can mainly offer a large structure distribution of the deep structures. The ability to combine all the existing data collected from various resources and different scales to construct a 3D discrete fracture network (DFN) model of the rock mass allows to adequately represent the physical behavior of the interested subsurface structure.</p><p>In this study, an effort on the construction of such a 3D DFN model is carried out via combination of various structural and hydrogeological data collected in fractured crystalline rock. During the pre-characterization phase of the In-situ Stimulation and Circulation (ISC) experiment [Amann et al., 2018] at the Grimsel Test Site (GTS) in central Switzerland, a comprehensive characterization campaign was carried out to better understand the hydromechanical characteristics of the existing structures. The collected multiscale and multidisciplinary data such as OPTV, ATV, hydraulic packer testing and solute tracer tests [Jalali et al., 2018; Krietsch et al., 2018] are combined, analyzed and interpreted to form a combined stochastic and deterministic DFN model using the FracMan software [Golder Associates, 2017]. For further validation of the model, the results from in-situ hydraulic tests are used to compare the simulated and measured hydraulic responses, allowing to evaluate whether the simulated model could reasonably represent the characteristics of the fracture network in the ISC experiment.</p><p> </p><p><strong>References</strong></p><ul><li>Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, M., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M.O., Loew, S., Driesner, T., Maurer, H., Giardini, D., 2018. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth 9, 115–137.</li> <li>Golder Associates, 2017. FracMan User Documentation.  Golder Associates Inc, Redmond WA.</li> <li>Krietsch, H., Doetsch, J., Dutler, N., Jalali, M., Gischig, V., Loew, S., Amann, F., 2018. Comprehensive geological dataset describing a crystalline rock mass for hydraulic stimulation experiments. Scientific Data 5, 180269.</li> <li>Jalali, M., Klepikova, M., Doetsch, J., Krietsch, H., Brixel, B., Dutler, N., Gischig, V., Amann, F., 2018. A Multi-Scale Approach to Identify and Characterize the Preferential Flow Paths of a Fractured Crystalline Rock. Presented at the 2<sup>nd</sup> International Discrete Fracture Network Engineering Conference, American Rock Mechanics Association.</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document