scholarly journals On a Functional Integral Equation

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1321
Author(s):  
Daniela Marian ◽  
Sorina Anamaria Ciplea ◽  
Nicolaie Lungu

In this paper, we establish some results for a Volterra–Hammerstein integral equation with modified arguments: existence and uniqueness, integral inequalities, monotony and Ulam-Hyers-Rassias stability. We emphasize that many problems from the domain of symmetry are modeled by differential and integral equations and those are approached in the stability point of view. In the literature, Fredholm, Volterra and Hammerstein integrals equations with symmetric kernels are studied. Our results can be applied as particular cases to these equations.

2018 ◽  
Vol 68 (1) ◽  
pp. 77-88
Author(s):  
Marcin Borkowski ◽  
Daria Bugajewska

Abstract In this paper we are going to apply the Henstock-Kurzweil integrals defined on an unbounded intervals to differential and integral equations defined on such intervals. To deal with linear differential equations we examine convolution involving functions integrable in Henstock-Kurzweil sense. In the case of nonlinear Hammerstein integral equation as well as Volterra integral equation we look for solutions in the space of functions of bounded variation in the sense of Jordan.


2015 ◽  
Vol 67 (5) ◽  
pp. 1024-1045
Author(s):  
Samia Ashraf ◽  
Haniya Azam ◽  
Barbu Berceanu

AbstractThe symmetric group 𝓢n acts on the power set 𝓟(n) and also on the set of square free polynomials in n variables. These two related representations are analyzed from the stability point of view. An application is given for the action of the symmetric group on the cohomology of the pure braid group.


2001 ◽  
Vol 42 (3) ◽  
pp. 372-386 ◽  
Author(s):  
J. M. Gutiérrez ◽  
M. A. Hernández

AbstractNewton's method is applied to an operator that satisfies stronger conditions than those of Kantorovich. Convergence and error estimates are compared in the two situations. As an application, we obtain information on the existence and uniqueness of a solution for differential and integral equations.


1924 ◽  
Vol 22 (2) ◽  
pp. 169-185 ◽  
Author(s):  
J. Hyslop

The following paper aims at a more general treatment than has hitherto been given, of the integral expansions of arbitrary functions, from the point of view of integral equation theory.


2019 ◽  
Vol 20 (3) ◽  
pp. 403
Author(s):  
Suzete M Afonso ◽  
Juarez S Azevedo ◽  
Mariana P. G. Da Silva ◽  
Adson M Rocha

In this work we consider the general functional-integral equation: \begin{equation*}y(t) = f\left(t, \int_{a}^{b} k(t,s)g(s,y(s))ds\right), \qquad t\in [a,b],\end{equation*}and give conditions that guarantee existence and uniqueness of solution in $L^p([a,b])$, with {$1<p<\infty$}.We use  Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples.


2020 ◽  
Vol 13 (4) ◽  
pp. 995-1015
Author(s):  
Abdullah Abdullah ◽  
Muhammad Sarwar ◽  
Zead Mustafa ◽  
Mohammed M.M. Jaradat

In this paper, using rational type contractive conditions, the existence and uniqueness of common coupled fixed point theorem in the set up of Gb-metric spaces is studied. The derived result cover and generalize some well-known comparable results in the existing literature. Then we use the derived results to prove the existence and uniqueness solution for some classes of integral equations. Further more, an example of such type of integral equation is presented.


Author(s):  
ZHIYUAN HUANG ◽  
CAISHI WANG ◽  
XIANGJUN WANG

Quantum integral equation of Volterra type with generalized operator-valued kernel is introduced. Existence and uniqueness of solutions are established, explicit expression of the solution is given, the continuity, continuous dependence on free terms and other properties of the solution are proved.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1193
Author(s):  
Suzan Cival Buranay ◽  
Mehmet Ali Özarslan ◽  
Sara Safarzadeh Falahhesar

The main aim of this paper is to numerically solve the first kind linear Fredholm and Volterra integral equations by using Modified Bernstein–Kantorovich operators. The unknown function in the first kind integral equation is approximated by using the Modified Bernstein–Kantorovich operators. Hence, by using discretization, the obtained linear equations are transformed into systems of algebraic linear equations. Due to the sensitivity of the solutions on the input data, significant difficulties may be encountered, leading to instabilities in the results during actualization. Consequently, to improve on the stability of the solutions which imply the accuracy of the desired results, regularization features are built into the proposed numerical approach. More stable approximations to the solutions of the Fredholm and Volterra integral equations are obtained especially when high order approximations are used by the Modified Bernstein–Kantorovich operators. Test problems are constructed to show the computational efficiency, applicability and the accuracy of the method. Furthermore, the method is also applied to second kind Volterra integral equations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Reza Arab ◽  
Hemant Kumar Nashine ◽  
N. H. Can ◽  
Tran Thanh Binh

AbstractWe investigate the solutions of functional-integral equation of fractional order in the setting of a measure of noncompactness on real-valued bounded and continuous Banach space. We introduce a new μ-set contraction operator and derive generalized Darbo fixed point results using an arbitrary measure of noncompactness in Banach spaces. An illustration is given in support of the solution of a functional-integral equation of fractional order.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Maria Dobriţoiu

Using some of the extended fixed point results for Geraghty contractions in b-metric spaces given by Faraji, Savić and Radenović and their idea to apply these results to nonlinear integral equations, in this paper we present some existence and uniqueness conditions for the solution of a nonlinear Fredholm–Volterra integral equation with a modified argument.


Sign in / Sign up

Export Citation Format

Share Document