scholarly journals An Ulm-Type Inverse-Free Iterative Scheme for Fredholm Integral Equations of Second Kind

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1957
Author(s):  
José M. Gutiérrez ◽  
Miguel Á. Hernández-Verón

In this paper, we present an iterative method based on the well-known Ulm’s method to numerically solve Fredholm integral equations of the second kind. We support our strategy in the symmetry between two well-known problems in Numerical Analysis: the solution of linear integral equations and the approximation of inverse operators. In this way, we obtain a two-folded algorithm that allows us to approximate, with quadratic order of convergence, the solution of the integral equation as well as the inverses at the solution of the derivative of the operator related to the problem. We have studied the semilocal convergence of the method and we have obtained the expression of the method in a particular case, given by some adequate initial choices. The theoretical results are illustrated with two applications to integral equations, given by symmetric non-separable kernels.

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1747
Author(s):  
José Manuel Gutiérrez ◽  
Miguel Ángel Hernández-Verón ◽  
Eulalia Martínez

This work is devoted to Fredholm integral equations of second kind with non-separable kernels. Our strategy is to approximate the non-separable kernel by using an adequate Taylor’s development. Then, we adapt an already known technique used for separable kernels to our case. First, we study the local convergence of the proposed iterative scheme, so we obtain a ball of starting points around the solution. Then, we complete the theoretical study with the semilocal convergence analysis, that allow us to obtain the domain of existence for the solution in terms of the starting point. In this case, the existence of a solution is deduced. Finally, we illustrate this study with some numerical experiments.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0342
Author(s):  
Muna Mansoor Mustafaf

In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree  and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods is produced. Finally, for more explanation, an algorithm is proposed and applied for testing examples to illustrate the effectiveness of the new technique.


2022 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Parviz Darania ◽  
Saeed Pishbin

In this note, we study a class of multistep collocation methods for the numerical integration of nonlinear Volterra-Fredholm Integral Equations (V-FIEs). The derived method is characterized by a lower triangular or diagonal coefficient matrix of the nonlinear system for the computation of the stages which, as it is known, can beexploited to get an efficient implementation. Convergence analysis and linear stability estimates are investigated. Finally numerical experiments are given, which confirm our theoretical results.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Vladimir Vasilyev ◽  
Nikolai Eberlein

We study a certain conjugation problem for a pair of elliptic pseudo-differential equations with homogeneous symbols inside and outside of a plane sector. The solution is sought in corresponding Sobolev–Slobodetskii spaces. Using the wave factorization concept for elliptic symbols, we derive a general solution of the conjugation problem. Adding some complementary conditions, we obtain a system of linear integral equations. If the symbols are homogeneous, then we can apply the Mellin transform to such a system to reduce it to a system of linear algebraic equations with respect to unknown functions.


Author(s):  
F. V. Atkinson

SynopsisThe paper deals with explicit estimates concerning certain circles in the complex plane which were associated with Sturm–Liouville problems by H. Weyl. By the use of Riccati equations instead of linear integral equations, improvements are obtained for results of Everitt and Halvorsen concerning the behaviour of the Titchmarsh–Weyl m-coefficient.


Sign in / Sign up

Export Citation Format

Share Document