scholarly journals Rolling Bearing Fault Diagnosis Based on Deep Learning and Autoencoder Information Fusion

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Jianpeng Ma ◽  
Chengwei Li ◽  
Guangzhu Zhang

The multisource information fusion technique is currently one of the common methods for rolling bearing fault diagnosis. However, the current research rarely fuses information from the data of different sensors. At the same time, the dispersion itself in the VAE method has asymmetric characteristics, which can enhance the robustness of the system. Therefore, in this paper, the information fusion method of the variational autoencoder (VAE) and random forest (RF) methods are targeted for subsequent lifetime evolution analysis. This fusion method achieves, for the first time, the simultaneous monitoring of acceleration signals, weak magnetic signals and temperature signals of rolling bearings, thus improving the fault diagnosis capability and laying the foundation for subsequent life evolution analysis and the study of the fault–slip correlation. Drawing on the experimental procedure of the CWRU’s rolling bearing dataset, the proposed VAERF technique was evaluated by conducting inner ring fault diagnosis experiments on the experimental platform of the self-research project. The proposed method exhibits the best performance compared to other point-to-point algorithms, achieving a classification rate of 98.19%. The comparison results further demonstrate that the deep learning fusion of weak magnetic and vibration signals can improve the fault diagnosis of rolling bearings.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Gu ◽  
Jiawei Cao ◽  
Xin Song ◽  
Jian Yao

The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of the collected signals with environmental noise in the course of the work of rotating machines, this article proposes a novel approach for detecting the bearing fault, which is based on deep learning. To effectively detect, locate, and identify faults in rolling bearings, a stacked noise reduction autoencoder is utilized for abstracting characteristic from the original vibration of signals, and then, the characteristic is provided as input for backpropagation (BP) network classifier. The results output by this classifier represent different fault categories. Experimental results obtained on rolling bearing datasets show that this method can be used to effectively diagnose bearing faults based on original time-domain signals.


2013 ◽  
Vol 273 ◽  
pp. 260-263
Author(s):  
Ling Li Jiang ◽  
Hua Kui Yin ◽  
Si Wen Tang

Bearing failure is one of the foremost causes of breakdowns in rotating machinery and such failure can be catastrophic. Fault diagnosis is critical to maintaining the normal operation of the bearings. This paper proposes feature-level fusion method for rolling bearing fault diagnosis. Features are extracted from eight vibration signals to constitute a fusion vector. SVM is used for pattern recognition. The case study results show that the proposed method is useful for rolling bearing fault diagnosis.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 757-765
Author(s):  
Wang Hailun ◽  
Alexander Martinez

Abstract Rolling bearings are an important part of rotary machines. They are used most widely in various mechanical sectors, which are among the most vulnerable components in machines. This paper uses CKF algorithm to compile a signal analysis system, analyses the vibration signal of the rolling bearing, extracts fault features, and realizes fault diagnosis. In order to improve the estimation accuracy of bearing fault diagnosis under nonlinear model, a nonlinear model of bearing fault diagnosis based on quaternion and low-accuracy high-noise sensors is established, and the attitude estimation has performed using the culture Kalman filter (CKF) algorithm. The sensor data comparison shows that the use of the volumetric Kalman filter algorithm can effectively improve the estimation accuracy of bearing fault diagnosis and stability. In this paper, the measured vibration signals of several groups of rolling bearings are analysed, and the signal characteristic frequency has extracted. The results show that using the analysis software designed in this paper, several typical faults of rolling bearings can be correctly identified.


2020 ◽  
Vol 10 (12) ◽  
pp. 4086
Author(s):  
Guozheng Li ◽  
Nanlin Tan ◽  
Xiang Li

Rolling bearings are widely used in rotating machinery. Their fault feature signals are often submerged in strong noise and are difficult to identify. This paper presents a new method of bearing fault diagnosis that combines the coupled Lorenz system and power spectrum technology. The process is achieved in the following three steps. First, a synchronization system based on the Lorenz system is constructed using the driving-response method. Second, when the tested signal is connected to the driving end, the synchronization error between the two sub-chaotic systems is obtained. Finally, the power spectrum density of the synchronization error is calculated and compared with the corresponding fault characteristic frequency. The coupled Lorenz system makes full use of the noise immunity and nonlinear amplification of the chaotic system. The detection characteristics and feasibility of the new method are verified by simulation and actual measured vibration data. The result shows that the noise reduction effect of the coupled Lorenz system is obvious. This method can improve the signal-to-noise ratio of the tested signal and provide a new way to perform fault diagnosis of rolling bearings.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6437
Author(s):  
Sihan Wang ◽  
Dazhi Wang ◽  
Deshan Kong ◽  
Jiaxing Wang ◽  
Wenhui Li ◽  
...  

Fault diagnosis methods based on deep learning and big data have achieved good results on rotating machinery. However, the conventional deep learning method of bearing fault diagnosis is mostly based on laboratory artificial simulation data, and there is an error with actual fault data, which will reduce the generalization performance of the deep learning method. In addition, labeled data are very precious in real industrial environment. Due to expensive equipment and personnel safety issues, it is difficult to obtain a large amount of high-quality fault labeling data. Therefore, in this paper, we propose a metric-based meta-learning method named Reinforce Relation Network (RRN) for diagnosing bearing faults with few-shot samples. In the proposed method, a 1D convolution neural network is used to extract fault features, and a metric learner is used to predict the similarity between samples under different transfer conditions. Label smoothing and the Adabound algorithm are utilized to further improve the performance of network classification. The performance of the proposed method is verified on a dataset which contains artificial damage and natural damage data. The comparison studies with other methods demonstrate the superiority of the proposed method in the few-shot scenario.


2021 ◽  
Author(s):  
FENGPING AN ◽  
Jianrong Wang

Abstract As the key component of a mechanical system, rolling bearings will cause paralysis of the entire mechanical system once they fail. In recent years, considering the high generalization ability and nonlinear modeling ability of deep learning, a rolling bearing fault diagnosis method based on deep learning has been formed, and good results have been achieved. However, because this kind of method is still in the initial development stage, its main problems are as follows. First, it is difficult to extract the composite fault signal feature of rolling bearing. Second, the existing deep learning rolling bearing fault diagnosis methods cannot well consider the problem of multi-scale information of rolling bearing signals. Therefore, this paper first proposes the overlapping group sparse model. It constructs weight coefficients by analyzing the salient features of the signal. It uses convex optimization techniques to solve the sparse optimization model, and applies the method to the feature extraction of rolling bearing composite faults. For the problem of multi-scale feature information extraction of rolling bearing composite fault signals, this paper proposes a new deep complex convolutional neural network model. This model fully considers the multi-scale information of rolling bearing signals. The complex information in this model not only contains rich representation ability, but also can extract more scale information. Finally, the classifier of this model is used to identify rolling bearing faults. Based on this, this paper proposes a new rolling bearing fault diagnosis algorithm based on overlapping group sparse model-deep complex convolutional neural network. The experimental results show that the method proposed in this paper can not only effectively identify rolling bearing faults under constant operating conditions, but also accurately identify rolling bearing fault signals under changing operating conditions. Additionally, the classification accuracy of the method proposed in this paper is greatly improved compared with traditional machine learning methods. It also has certain advantages over other deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document