scholarly journals A Literature Review on Caching Transient Contents in Vehicular Named Data Networking

Telecom ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 75-92
Author(s):  
Marica Amadeo

Vehicular Named Data Networking (VNDN) is a revolutionary information-centric architecture specifically conceived for vehicular networks and characterized by name-based forwarding and in-network caching. So far, a variety of caching schemes have been proposed for VNDN that work in presence of static Data packets, like traditional Internet contents. However, with the advent of Internet of Things (IoT) and Internet of Vehicles (IoV) applications, large sets of vehicular contents are expected to be transient, i.e., they are characterized by a limited lifetime and become invalid after the latter expires. This is the case of information related to road traffic or parking lot availability, which can change after a few minutes—or even after a few seconds—it has been generated at the source. The transiency of contents may highly influence the network performance, including the gain of in-network caching. Therefore, in this paper, we consider the dissemination of transient contents in vehicular networks and its effects on VNDN caching. By providing a detailed review of related work, we identify the main challenges and objectives when caching transient contents, e.g., to avoid cache inconsistency, to minimize the Age of Information (AoI) and the retrieval latency, and the main strategies to fulfill them. We scan the existing caching and replacement policies specifically designed for transient contents in VNDN and, finally, we outline interesting research perspectives.

Author(s):  
João Vitor Torres ◽  
Igor Drummond Alvarenga ◽  
Raouf Boutaba ◽  
Otto Carlos Muniz Bandeira Duarte

Abstract The huge amount of content names available in Named-Data Networking (NDN) challenges both the required routing table size and the techniques for locating and forwarding information. Content copies and content mobility exacerbate the scalability challenge to reach content in the new locations. We present and analyze the performance of a proposed Controller-based Routing Scheme, named CRoS-NDN, which preserves NDN features using the same interest and data packets. CRoS-NDN supports content mobility and provides fast content recovery from copies that do not belong to the consumer-producer path because it splits identity from location without incurring FIB size explosion or supposing prefix aggregation. It provides features similar to Content Distribution Networks (CDN) in NDN, and improves the routing efficiency. We compare our proposal with similar routing protocols and derive analytical expressions for lower-bound efficiency and upper-bound latency. We also conduct extensive simulations to evaluate results in data delivery efficiency and delay. The results show the robust behavior of the proposed scheme achieving the best efficiency and delay performance for a wide range of scenarios. Furthermore, CRoS-NDN results in low use of processing time and memory for a growing number of prefixes.


2017 ◽  
Vol 55 (8) ◽  
pp. 60-66 ◽  
Author(s):  
Syed Hassan Ahmed ◽  
Safdar Hussain Bouk ◽  
Dongkyun Kim ◽  
Danda B. Rawat ◽  
Houbing Song

Author(s):  
Muktar Hussaini ◽  
Shahrudin Awang Nor ◽  
Amran Ahmad

<p>Named Data Networking is a consumer-driven network that supports content consumer mobility due to the nature of in-network catching. The catching suppressed unnecessary Interest packets losses by providing an immediate copy of the data and consumer-driven nature influencedthe mobile consumer to resend unsatisfied Interest packet immediately after the handoff. Once the producer moves to a new location, the name prefix changed automatically after handoff to the new router or point of attachment. The entire network lacks the knowledge of producer movement unless if the producer announces its new prefix to update the FIBs of intermediate routers. Lack of producer’s movement knowledge causes an increase of handoff latency, signaling overhead cost, Interests packets losses, poor utilization of bandwidth and packets delivery. Therefore, there is needs to provide substantial producer mobility support to minimize the handoff latency, handoff signaling overhead cost, reduce the unnecessary Interest packets loss to improve data packets delivery once a content producer relocated. In this paper, broadcasting strategy is introduced to facilitate the handoff procedures and update the intermediate routers about the producer movement. Hence, analytical investigation result of this paper addresses the deficiency of Kite scheme by minimizing handoff signaling cost and provides data path optimization after the handoff.<strong></strong></p>


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Moneeb Gohar ◽  
Naveed Khan ◽  
Awais Ahmad ◽  
Muhammad Najam-Ul-Islam ◽  
Shahzad Sarwar ◽  
...  

Named data networking (NDN) is an emerging technology. It was designed to eliminate the dependency of IP addresses in the hourglass model. Mobility is a key concern of the modern Internet architecture, even though the NDN architecture has solved the consumer mobility. That is, the consumer can rerequest the desired data contents, while the producer mobility remains as an issue in the NDN architecture. This paper focuses on the issue of producer mobility and proposes the cluster-based device mobility management scheme, which uses the cluster heads to solve the producer mobility issue in NDN. In the proposed scheme, a cluster head has all information of its attached devices. A cluster head updates the routes, when a device moves to the new access router by sending all the attachment information. The proposed scheme is evaluated and compared with the existing scheme by using the ndnSIM simulation. From the results, we see that the proposed scheme can decrease the numbers of interest packets in the network, compared with the existing scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hakima Khelifi ◽  
Senlin Luo ◽  
Boubakr Nour ◽  
Sayed Chhattan Shah

A tremendous amount of content and information are exchanging in a vehicular environment between vehicles, roadside units, and the Internet. This information aims to improve the driving experience and human safety. Due to the VANET’s properties and application characteristics, the security becomes an essential aspect and a more challenging task. On the contrary, named data networking has been proposed as a future Internet architecture that may improve the network performance, enhance content access and dissemination, and decrease the communication delay. NDN uses a clean design based on content names and Interest-Data exchange model. In this paper, we focus on the vehicular named data networking environment, targeting the security attacks and privacy issues. We present a state of the art of existing VANET attacks and how NDN can deal with them. We classified these attacks based on the NDN perspective. Furthermore, we define various challenges and issues faced by NDN-based VANET and highlight future research directions that should be addressed by the research community.


2013 ◽  
Author(s):  
Charles Duan ◽  
Cynthia Grady ◽  
Paul Ohm ◽  
James Grimmelmann

Sign in / Sign up

Export Citation Format

Share Document