scholarly journals Designing Smart Electromagnetic Environments for Next-Generation Wireless Communications

Telecom ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 213-221
Author(s):  
Andrea Massa ◽  
Arianna Benoni ◽  
Pietro Da Rù ◽  
Sotirios K. Goudos ◽  
Baozhu Li ◽  
...  

The design of a smart electromagnetic (EM) environment for next-generation wireless communication systems is addressed in this work. The proposed approach aims at synthesizing a desired EM field distribution over a target region, where the receiving terminals are located, through the opportunistic exploitation of the complex scattering interactions between the EM field generated by a reconfigurable primary source and the objects/scatterers present in the environment, which behave as application-driven passive metastructures. The effectiveness and the potentialities of the proposed design methodology are assessed with a proof-of-concept numerical result obtained by means of advanced and reliable simulation tools.

Author(s):  
Nikolaos Zompakis ◽  
Francky Catthoor ◽  
D. Soudris

Next generation wireless systems support a wide range of communication protocols and services, opening new design challenges. The desired flexibility presupposes effective approaches that exploit the system configurations with an optimal way. A well-known state-of-the-art example of a wireless platform is the Software Defined Radio (SDR). SDRs are characterized by strict performance requirements that introduce a lot of dynamism in respect with the resource utilization. Additionally, these devices experience transient overloads due to workload bursts or hardware malfunctions. The aforementioned reasons lead the system to take timely reactions to unexpected usage scenarios. The current chapter concentrates on these design challenges exploiting the system scenario methodology, proposing solutions especially for wireless communication systems. More precisely, it will be studied the tradeoffs between the representativeness of the scenarios (clustering overhead), the implementation of the scenario detection (detection overhead) and the platform tuning cost (switching overhead).


Sign in / Sign up

Export Citation Format

Share Document