scholarly journals Production of Paralytic Shellfish Toxins (PSTs) in Toxic Alexandrium catenella is Intertwined with Photosynthesis and Energy Production

Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 477 ◽  
Author(s):  
Sirius Pui-kam Tse ◽  
Fred Wang-fat Lee ◽  
Daniel Yun-lam Mak ◽  
Hang-kin Kong ◽  
Kenrick Kai-yuen Chan ◽  
...  

To investigate the mechanism for the production of paralytic shellfish toxins (PST) in toxic dinoflagellates, with a 2D-gel based approach, we had made two sets of proteomic comparisons: (a) between a toxic Alexandrium catenella (AC-T) and a phylogenetically closely related non-toxic strain (AC-N), (b) between toxic AC-T grown in a medium with 10% normal amount of phosphate (AC-T-10%P) known to induce higher toxicity and AC-T grown in normal medium. We found that photosynthesis and energy production related proteins were up-regulated in AC-T when compared to AC-N. However, the same group of proteins was down-regulated in AC-T-10%P when compared to normal AC-T. Examining the relationship of photosynthesis and toxin content of AC-T upon continuous photoperiod experiment revealed that while growth and associated toxin content increased after 8 days of continuous light, toxin content maintained constant when cells were shifted from continuous light to continuous dark for 3 days. This emphasized the cruciality of light availability on toxin biosynthesis in AC-T, while another light-independent mechanism may be responsible for higher toxicity in AC-T-10%P compared to normal AC-T. Taken all together, it is believed that the interplay between “illumination”, “photosynthesis”, “phosphate availability”, and “toxin production” is much more complicated than what we had previously anticipated.

Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 442
Author(s):  
Seung Ho Baek ◽  
Jung Min Choi ◽  
Minji Lee ◽  
Bum Soo Park ◽  
Yuchengmin Zhang ◽  
...  

Paralytic shellfish toxins (PSTs) produced by Alexandrium catenella (formerly A. tamarense) in Korean coastal waters caused the deaths of four people (in 1986 and 1996) who consumed contaminated mussels (Mytilus edulis). This led to more detailed consideration of the risks of PST outbreaks and incidents in Korea, including the introduction of shellfish collection bans. In this study, we investigated the relationships between A. catenella population dynamics and PST accumulation in the mussel M. galloprovincialis. Discharges from the Nakdong River affect the environmental conditions along the Geoje coast, resulting in low salinity and high nutrient levels that trigger blooms of A. catenella. At the toxin peak on 24 April 2017, the toxins detected in A. catenella cells were C1, gonyautoxin (GTX)1 and GTX2, whereas the concentrations of PSTs in M. galloprovincialis were high and in the order of GTX4 > GTX1 > GTX3 > saxitoxin (STX) > GTX2 > neoSTX > decarbamoylgonyautoxin (dcGTX)2 > dc GTX3. The PST level in mussels was also high. At 15 °C, the PSTs are constantly found to be higher (10-fold higher in 2017 and 30-fold higher in 2018) than safe levels for human consumption (80 μg STX diHCl equivalents 100 g−1).


2003 ◽  
Vol 69 (9) ◽  
pp. 5693-5698 ◽  
Author(s):  
Claudia A. Martins ◽  
Paula Alvito ◽  
Maria João Tavares ◽  
Paulo Pereira ◽  
Gregory Doucette ◽  
...  

ABSTRACT Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by certain dinoflagellate and cyanobacterial species. The autonomous production of PSTs by bacteria remains controversial. In this study, PST production by two bacterial strains, isolated previously from toxic dinoflagellates, was evaluated using biological and analytical methods. Analyses were performed under conditions determined previously to be optimal for toxin production and detection. Our data are inconsistent with autonomous bacterial PST production under these conditions, thereby challenging previous findings for the same strains.


Toxicon ◽  
2021 ◽  
Vol 195 ◽  
pp. 48-57
Author(s):  
Jésica Tobke ◽  
Erica Giarratano ◽  
Alejandro Ortiz ◽  
Carla Garrido ◽  
Mariana Serra ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 564 ◽  
Author(s):  
Urban Tillmann ◽  
Bernd Krock ◽  
Stephan Wietkamp ◽  
Alfred Beran

Species of the dinophyte genus Alexandrium are widely distributed and are notorious bloom formers and producers of various potent phycotoxins. The species Alexandrium taylorii is known to form recurrent and dense blooms in the Mediterranean, but its toxin production potential is poorly studied. Here we investigated toxin production potential of a Mediterranean A. taylorii clonal strain by combining state-of-the-art screening for various toxins known to be produced within Alexandrium with a sound morphological and molecular designation of the studied strain. As shown by a detailed thecal plate analysis, morphology of the A. taylorii strain AY7T from the Adriatic Sea conformed with the original species description. Moreover, newly obtained Large Subunit (LSU) and Internal Transcribed Spacers (ITS) rDNA sequences perfectly matched with the majority of other Mediterranean A. taylorii strains from the databases. Based on both ion pair chromatography coupled to post-column derivatization and fluorescence detection (LC-FLD) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis it is shown that A. taylorii AY7T does not produce paralytic shellfish toxins (PST) above a detection limit of ca. 1 fg cell−1, and also lacks any traces of spirolides and gymnodimines. The strain caused cell lysis of protistan species due to poorly characterized lytic compounds, with a density of 185 cells mL−1 causing 50% cell lysis of cryptophyte bioassay target cells (EC50). As shown here for the first time A. taylorii AY7T produced goniodomin A (GDA) at a cellular level of 11.7 pg cell−1. This first report of goniodomin (GD) production of A. taylorii supports the close evolutionary relationship of A. taylorii to other identified GD-producing Alexandrium species. As GD have been causatively linked to fish kills, future studies of Mediterranean A. taylorii blooms should include analysis of GD and should draw attention to potential links to fish kills or other environmental damage.


Sign in / Sign up

Export Citation Format

Share Document