shellfish toxin
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 31)

H-INDEX

31
(FIVE YEARS 4)

Harmful Algae ◽  
2022 ◽  
Vol 111 ◽  
pp. 102147
Author(s):  
Andalus T. Punongbayan ◽  
Ysabel D. Wang ◽  
Cesar L. Villanoy ◽  
Aletta T. Yñiguez

BioMetals ◽  
2021 ◽  
Author(s):  
Kyoko Yarimizu ◽  
Jorge I. Mardones ◽  
Javier Paredes-Mella ◽  
Luis Norambuena-Subiabre ◽  
Carl J. Carrano ◽  
...  

AbstractThe dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly brought severe ecological and economic impacts to Chile, especially in the southern region, where the shellfish and salmon industries are world-famous. The mechanisms of such HABs have been intensively studied but are still unclear. Nutrient overloading is one of the often-discussed drivers for HABs. The present study used the A. catenella strain isolated from southern Chile to investigate how iron conditions could affect their growth and toxin production as related to HAB. Our results showed that an optimum concentration of iron was pivotal for proper A. catenella growth. Thus, while excess iron exerted a toxic effect, low iron media led to iron insufficiency and growth inhibition. In addition, the study shows that the degree of paralytic shellfish toxin production by A. catenella varied depending on the iron concentration in the culture media. The A. catenella strain from southern Chile produced GTX1-4 exclusively in the fmol cell−1 scale. Based on these findings, we suggest that including iron and paralytic shellfish toxin measurements in the fields can improve the current HAB monitoring and contribute to an understanding of A. catenella bloom dynamics in Chile.


Author(s):  
Elsa T. Rodrigues ◽  
Susana F. Nascimento ◽  
Cristiana L. Pires ◽  
Lia P. Godinho ◽  
Catarina Churro ◽  
...  

Toxicon ◽  
2021 ◽  
Author(s):  
Armando Mendoza-Flores ◽  
Ignacio Leyva-Valencia ◽  
Francisco E. Hernández-Sandoval ◽  
Clara E. Galindo-Sánchez ◽  
Christine J. Band-Schmidt ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Wade A. Rourke ◽  
Andrew Justason ◽  
Jennifer L. Martin ◽  
Cory J. Murphy

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 129
Author(s):  
Alison Turnbull ◽  
Andreas Seger ◽  
Jessica Jolley ◽  
Gustaaf Hallegraeff ◽  
Graeme Knowles ◽  
...  

Lobster species can accumulate paralytic shellfish toxins (PST) in their hepatopancreas following the consumption of toxic prey. The Southern Rock Lobster (SRL), Jasus edwardsii, industry in Tasmania, Australia, and New Zealand, collectively valued at AUD 365 M, actively manages PST risk based on toxin monitoring of lobsters in coastal waters. The SRL supply chain predominantly provides live lobsters, which includes wet holding in fishing vessels, sea-cages, or processing facilities for periods of up to several months. Survival, quality, and safety of this largely exported high-value product is a major consideration for the industry. In a controlled experiment, SRL were exposed to highly toxic cultures of Alexandrium catenella at field relevant concentrations (2 × 105 cells L−1) in an experimental aquaculture facility over a period of 21 days. While significant PST accumulation in the lobster hepatopancreas has been reported in parallel experiments feeding lobsters with toxic mussels, no PST toxin accumulated in this experiment from exposure to toxic algal cells, and no negative impact on lobster health was observed as assessed via a wide range of behavioural, immunological, and physiological measures. We conclude that there is no risk of PST accumulation, nor risk to survival or quality at the point of consumption through exposure to toxic algal cells.


Sign in / Sign up

Export Citation Format

Share Document