scholarly journals Interactions between Filter-Feeding Bivalves and Toxic Diatoms: Influence on the Feeding Behavior of Crassostrea gigas and Pecten maximus and on Toxin Production by Pseudo-nitzschia

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 577
Author(s):  
Aurore Sauvey ◽  
Françoise Denis ◽  
Hélène Hégaret ◽  
Bertrand Le Roy ◽  
Christophe Lelong ◽  
...  

Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms—e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.—are the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve species—oyster (Crassostrea gigas) and scallop (Pecten maximus)—and two toxic Pseudo-nitzschia species—P. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 × 10−3 and 5.1 × 10−3 µg g−1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 339
Author(s):  
Pablo Ventoso ◽  
Antonio J. Pazos ◽  
Juan Blanco ◽  
M. Luz Pérez-Parallé ◽  
Juan C. Triviño ◽  
...  

Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.



Harmful Algae ◽  
2007 ◽  
Vol 6 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Y.M. Bogan ◽  
D.J. Kennedy ◽  
A.L. Harkin ◽  
J. Gillespie ◽  
B.J. Vause ◽  
...  


2017 ◽  
Vol 98 (7) ◽  
pp. 1767-1773 ◽  
Author(s):  
Ana M.R. Liedke ◽  
Roberta M. Bonaldo ◽  
Bárbara Segal ◽  
Carlos E.L. Ferreira ◽  
Lucas T. Nunes ◽  
...  

Resource partitioning is considered one of the main processes driving diversification in ecological communities because it allows coexistence among closely related and ecologically equivalent species. We combined three complementary approaches, i.e. the evaluation of foraging behaviour, diet composition and nutritional condition (RNA:DNA ratio), to assess feeding by two closely related (sister) butterflyfishes that are syntopic in Puerto Rico. Chaetodon capistratus had a higher abundance and higher bite rate and selected octocorals and hard corals for feeding, whereas Chaetodon striatus fed preferentially on sandy substrates. Cnidarians and polychaetes were the most representative diet items for both species, but C. capistratus preferred the former (Feeding Index of 74.3%) and C. striatus the latter (Feeding Index of 60.4%). Similar RNA:DNA ratios for both species suggest that, although they differ in feeding rates and diet, C. capistratus and C. striatus have similar nutritional fitness. Therefore, these species are both zoobenthivores but show clear differences in their substrate selection. The differences in the use of foraging substrate by C. capistratus and C. striatus, despite their close phylogenetic relationship and similar diets, suggest that these species coexist by resource partitioning.



Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 371
Author(s):  
Juan Blanco ◽  
Aida Mauríz ◽  
Gonzalo Álvarez

The king scallop Pecten maximus retains the amnesic shellfish poisoning toxin, domoic acid (DA), for a long time. Most of the toxin is accumulated in the digestive gland, but this organ contains several cell types whose contribution to the accumulation of the toxin is unknown. Determining the time-course of the depuration by analyzing whole organs is difficult because the inter-individual variability is high. A sampling method, using biopsies of the digestive gland, has been developed. This method allows for repetitive sampling of the same scallop, but the representativeness of the samples obtained in this way needs to be validated. In this work, we found that the distribution of DA in the digestive gland of the scallops is mostly homogeneous. Only the area closest to the gonad, and especially its outer portion, had a lower concentration than the other ones, probably due to a transfer of the toxin to the intestinal loop. Samples obtained by biopsies can therefore be considered to be representative. Most of the toxin was accumulated in large cells (mostly digestive cells), which could be due to differences during the toxin absorption or to the preferential depuration of the toxin from the small cells (mostly secretory).



2020 ◽  
Vol 8 (12) ◽  
pp. 1021
Author(s):  
Chiara Gregorin ◽  
Luigi Musco ◽  
Emanuele Somma ◽  
Valerio Zupo

Violet sea squirts are noteworthy model organisms, because they provide insights into various physiologic processes, including cell senescence, ageing, apoptosis and allorecognition. Consequently, their culture is critical to permit experimental studies. Most papers refer to short periods of rearing using various feeds, both living and conserved, missing a formal justification for their use or indications of their actual nutritional value. Here, we use two behavioural responses—the percentage of open siphons and the frequency of zooid contractions—as compared to the abundance of suspended microparticles during feeding tests, to identify feeds able to promote filter-feeding. The results will enable to formulate compound diets that maximise positive physiological responses. Our tests demonstrated that plant items, such as dry microalgae and cyanobacteria (Arthrospira platensis, commercially known as Spirulina), along with living planktonic Haptophyta (Isochrysis galbana), trigger clear positive reactions, represented by a higher frequency of zooid contractions and larger proportions of open siphons. These responses correspond to decreases in the concentrations of suspended microparticles during the experiment and indicate higher filter-feeding activity. In contrast, feeds commonly administered to colonies, such as milk powder, dried eggs and artificial plankton, triggered negative behavioural responses, and their intake was lower during the feeding trials.





1986 ◽  
Vol 43 (10) ◽  
pp. 1935-1945 ◽  
Author(s):  
Ray W. Drenner ◽  
Stephen T. Threlkeld ◽  
Michael D. McCracken

In laboratory trials, feeding rates of an omnivorous filter-feeding clupeid, Dorosoma cepedianum, increased as a function of particle size, with maximal rates on microspheres, spherical algae, and Zooplankton >40 μm; it did not efficiently feed on filamentous Anabaena flos-aquae. To examine the community level impacts of Dorosoma, we conducted four seasonal outdoor tank experiments of cross-classified design involving two or three densities of Dorosoma and two densities of the zooplanktivorous atherinid fish, Menidia beryllina. We attempted to discriminate between the direct and indirect effects of Dorosoma on phytoplankton by using Menidia to produce indirect effects on phytoplankton by suppressing Zooplankton. Experiments began in November, March, June, and September and lasted for 45–53 d. Dorosoma suppressed most Zooplankton in at least one experiment and enhanced algal standing crops in all four experiments, as indicated by increased algal chlorophyll fluorescence, turbidity, Coulter counts and microscopic algal counts, and decreased Secchi depths. Because in three out of four experiments Menidia suppressed Zooplankton biomass to a greater extent than Dorosoma without enhancing phytoplankton, we reject the hypothesis that the enhancement of phytoplankton by Dorosoma was an indirect effect of Zooplankton biomass suppression.



2014 ◽  
Vol 38 (4) ◽  
pp. 1163-1177 ◽  
Author(s):  
Cristian A. Vargas ◽  
Victor M. Aguilera ◽  
Valeska San Martín ◽  
Patricio H. Manríquez ◽  
Jorge M. Navarro ◽  
...  


Aquaculture ◽  
2008 ◽  
Vol 284 (1-4) ◽  
pp. 224-230 ◽  
Author(s):  
Hui Liu ◽  
Maeve S. Kelly ◽  
Dirk A. Campbell ◽  
Jianguang Fang ◽  
Jianxin Zhu
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document