immune system process
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 9)

H-INDEX

2
(FIVE YEARS 2)

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 339
Author(s):  
Pablo Ventoso ◽  
Antonio J. Pazos ◽  
Juan Blanco ◽  
M. Luz Pérez-Parallé ◽  
Juan C. Triviño ◽  
...  

Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 424
Author(s):  
Naren Gaowa ◽  
Wenli Li ◽  
Brianna Murphy ◽  
Madison Cox

This study aimed to investigate the changes in abomasum transcriptome and the associated microbial community structure in young calves with artificially dosed, adult rumen contents. Eight young bull calves were randomly dosed with freshly extracted rumen contents from an adult cow (high efficiency (HE), n = 4), or sterilized rumen content (Con, n = 4). The dosing was administered within 3 days of birth, then at 2, 4, and 6 weeks following the initial dosing. Abomasum tissues were collected immediately after sacrifice at 8 weeks of age. Five genera (Tannerella, Desulfovibrio, Deinococcus, Leptotrichia, and Eubacterium; P < 0.05) showed significant difference in abundance between the treatments. A total of 975 differentially expressed genes were identified (P < 0.05, fold-change > 1.5, mean read-counts > 5). Pathway analysis indicated that up-regulated genes were involved in immune system process and defense response to virus, while the down-regulated genes involved in ion transport, ATP biosynthetic process, and mitochondrial electron transport. Positive correlation (r > 0.7, P < 0.05) was observed between TRPM4 gene and Desulfovibrio, which was significantly higher in the HE group. TRPM4 had a reported role in the immune system process. In conclusion, the dosing of adult rumen contents to calves can alter not only the composition of active microorganisms in the abomasum but also the molecular mechanisms in the abomasum tissue, including reduced protease secretion and decreased hydrochloric acid secretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Karthikeyan Subbarayan ◽  
Kamatchi Ulagappan ◽  
Claudia Wickenhauser ◽  
Michael Bachmann ◽  
Barbara Seliger

There exists increasing evidence that people with preceding medical conditions, such as diabetes and cancer, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease. To get insights into the possible role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term “immune system process GO: 0002376” were selected for coexpression analysis of the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2, and FURIN in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets. DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least coexpressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of which there were eight common networking genes in mixed healthy (323) and pan-cancer (11003) tissues in addition to normal (87), cancer (90), and diabetic (128) pancreatic tissues. Using this approach, three commonly applicable druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. These include positive associations of ACE2—DPP4 and TMPRSS2—SRC as well as a negative association of FURIN with ADAM17. Furthermore, 16 drugs were extracted from STITCH (score &lt;0.8) with 32 target genes. Thus, an immunological network associated with HT-SARS-CoV-2 using bioinformatics tools was identified leading to novel therapeutic opportunities for COVID-19.


2020 ◽  
Author(s):  
Karthikeyan Subbarayan ◽  
Kamatchi Ulagappan ◽  
Claudia Wickenhauser ◽  
Barbara Seliger

Abstract Background There exists increasing evidence that people with preceding medical conditions, such as asthma, diabetes, cancers and heart disease, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease.Methods To get insights into the role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term “immune system process GO: 0002376” were selected for analyses. The immune system genes potentially co-expressed with the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2 and FURIN were determined in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets.Results DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least co-expressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of 8 commonly networking genes in mixed healthy (323) and cancer (11003) tissues in addition to normal (87), cancer (90) and diabetic (128) pancreatic tissues. Using this approach, three druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. They include positive associations of ACE2 - DPP4 and TMPRSS2 – SRC as well as a negative association of FURIN with ADAM17. Furthermore, the 16 drugs were extracted from STITCH (score <0.8) with 32 target genes.Conclusions This bioinformatics pipeline identified for the first time an immunological network associated with COVID-19 infection thereby postulating novel therapeutic opportunities.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1760-1760
Author(s):  
David Nieman ◽  
Arnoud Groen ◽  
Artyom Pugachev ◽  
Andrew Simonson ◽  
Kristine Polley ◽  
...  

Abstract Objectives Proteomics when combined with psychological, nutrition, and performance measures may serve as a useful monitoring system for immune dysfunction, training distress, and exercise-induced muscle damage and exhaustion in athletes. Global proteomics monitoring of an elite adventure athlete (age 33 years) was conducted over a 28-week period that culminated in the successful, unassisted 2-month trek across Antarctica (1500 km). Methods Training distress was monitored weekly using the 19-item, validated Training Distress Scale (TDS). Weekly dried blood spot (DBS) specimens were collected via fingerprick blood drops onto standard blood spot cards. DBS proteins were measured with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) in data-independent acquisition (DIA) mode, and 712 proteins were identified and quantified. Results The participant experienced a decrease of 11.4 kg in body mass during the Antarctica trek. The 28-week period was divided into time segments based on TDS scores, and a contrast analysis between weeks 5–8 (low TDS) and weeks 20–23 (high TDS, last month of Antarctica trek) showed that 31 proteins (n = 20 immune related, n = 14 nutrition related with n = 8 in dual roles) were upregulated and 35 (n = 17 immune related) were downregulated. Protein-protein interaction (PPI) networks and gene ontology (GO) biological process analysis supported an increase in plasma lipoprotein particle remodeling, regulation of lipid transport, retinoid metabolic process, and vitamin transport due to high energy intake (7048 kcal/d). PPI networks also supported a dichotomous immune response. GO terms for the upregulated immune proteins showed an increase in regulation of the immune system process, especially inflammation, complement activation, and leukocyte mediated immunity. GO terms for the downregulated immune-related proteins indicated a decrease in several aspects of the overall immune system process including neutrophil degranulation and the antimicrobial humoral response. Conclusions These proteomics data support a dysfunctional immune response in an elite adventure athlete during a sustained period of mental and physical distress, high energy intake, and significant loss of body mass while trekking solo across Antarctica. Funding Sources Standard Process, Inc., Palmyra, WI.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 378 ◽  
Author(s):  
Weiqing Zheng ◽  
Rika Umemiya-Shirafuji ◽  
Shengen Chen ◽  
Kiyoshi Okado ◽  
Paul Franck Adjou Moumouni ◽  
...  

Haemaphysalis longicornis is a tick and a vector of various pathogens, including the human pathogenetic Babesia microti. The objective of this study was to identify female H. longicornis genes differentially expressed in response to infection with B. microti Gray strain by using a suppression subtractive hybridization (SSH) procedure. A total of 302 randomly selected clones were sequenced and analyzed in the forward subtracted SSH cDNA library related to Babesia infection, and 110 clones in the reverse cDNA library. Gene ontology assignments and sequence analyses of tick sequences in the forward cDNA library showed that 14 genes were related to response to stimulus or/and immune system process, and 7 genes had the higher number of standardized sequences per kilobase (SPK). Subsequent real-time PCR detection showed that eight genes including those encoding for Obg-like ATPase 1 (ola1), Calreticulin (crt), vitellogenin 1 (Vg1) and Vg2 were up-regulated in fed ticks. Compared to uninfected ticks, infected ticks had six up-regulated genes, including ola1, crt and Vg2. Functional analysis of up-regulated genes in fed or Babesia-infected ticks by RNA interference showed that knockdown of crt and Vg2 in infected ticks and knockdown of ola1 in uninfected ticks accelerated engorgement. In contrast, Vg1 knockdown in infected ticks had delayed engorgement. Knockdown of crt and Vg1 in infected ticks decreased engorged female weight. Vg2 knockdown reduced B. microti infection levels by 51% when compared with controls. The results reported here increase our understanding of roles of H. longicornis genes in blood feeding and B. microti infection.


Proteomes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
David C. Nieman ◽  
Arnoud J. Groen ◽  
Artyom Pugachev ◽  
Andrew J. Simonson ◽  
Kristine Polley ◽  
...  

Proteomics monitoring of an elite adventure athlete (age 33 years) was conducted over a 28-week period that culminated in the successful, solo, unassisted, and unsupported two month trek across the Antarctica (1500 km). Training distress was monitored weekly using a 19-item, validated training distress scale (TDS). Weekly dried blood spot (DBS) specimens were collected via fingerprick blood drops onto standard blood spot cards. DBS proteins were measured with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) in data-independent acquisition (DIA) mode, and 712 proteins were identified and quantified. The 28-week period was divided into time segments based on TDS scores, and a contrast analysis between weeks five and eight (low TDS) and between weeks 20 and 23 (high TDS, last month of Antarctica trek) showed that 31 proteins (n = 20 immune related) were upregulated and 35 (n = 17 immune related) were downregulated. Protein–protein interaction (PPI) networks supported a dichotomous immune response. Gene ontology (GO) biological process terms for the upregulated immune proteins showed an increase in regulation of the immune system process, especially inflammation, complement activation, and leukocyte mediated immunity. At the same time, GO terms for the downregulated immune-related proteins indicated a decrease in several aspects of the overall immune system process including neutrophil degranulation and the antimicrobial humoral response. These proteomics data support a dysfunctional immune response in an elite adventure athlete during a sustained period of mental and physical distress while trekking solo across the Antarctica.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Arun Sudhagar ◽  
Reinhard Ertl ◽  
Gokhlesh Kumar ◽  
Mansour El-Matbouli

Abstract Background Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. Methods Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. Results Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. Conclusion To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.


Sign in / Sign up

Export Citation Format

Share Document