scholarly journals Mapping Protein–Protein Interactions of the Resistance-Related Bacterial Zeta Toxin–Epsilon Antitoxin Complex (ε2ζ2) with High Affinity Peptide Ligands Using Fluorescence Polarization

Toxins ◽  
2016 ◽  
Vol 8 (7) ◽  
pp. 222 ◽  
Author(s):  
María Fernández-Bachiller ◽  
Iwona Brzozowska ◽  
Norbert Odolczyk ◽  
Urszula Zielenkiewicz ◽  
Piotr Zielenkiewicz ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avital Shushan ◽  
Mickey Kosloff

AbstractThe interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 177-188 ◽  
Author(s):  
Jianxing Song ◽  
Feng Ni

Using the design of bivalent and bridge-binding inhibitors of thrombin as an example, we review an NMR-based experimental approach for the design of functional mimetics of protein-protein interactions. The strategy includes: (i) identification of binding residues in peptide ligands by differential resonance perturbation, (ii) determination of protein-bound structures of peptide ligands by use of transferred NOEs, (iii) minimization of larger protein and peptide ligands on the basis of NMR structural information, and (iv) linkage of two weakly binding mimetics to produce an inhibitor with enhanced affinity and specificity. This approach can be especially effective for the design of potent and selective functional mimetics of protein-protein interactions because it is less likely that the surfaces of two related proteins or enzymes share two identical binding sites or regions.Key words: NMR, protein-protein interactions, functional mimetics, bridge-binding inhibitors, thrombin.


2005 ◽  
Vol 201 (4) ◽  
pp. 493-496 ◽  
Author(s):  
Myron F. Goodman ◽  
Matthew D. Scharff

Somatic hypermutation (SHM) in immunoglobulin genes is required for high affinity antibody–antigen binding. Cultured cell systems, mouse model systems, and human genetic deficiencies have been the key players in identifying likely SHM pathways, whereas “pure” biochemical approaches have been far less prominent, but change appears imminent. Here we comment on how, when, and why biochemistry is likely to emerge from the shadows and into the spotlight to elucidate how the somatic mutation of antibody variable (V) regions is generated.


1997 ◽  
Vol 232 (2) ◽  
pp. 578-582 ◽  
Author(s):  
Geoffrey M. Gersuk ◽  
Michael J. Corey ◽  
Eva Corey ◽  
James E. Stray ◽  
Glenn H. Kawasaki ◽  
...  

Biochemistry ◽  
1996 ◽  
Vol 35 (33) ◽  
pp. 10634-10640 ◽  
Author(s):  
M. T. Pisabarro ◽  
L. Serrano

Sign in / Sign up

Export Citation Format

Share Document