scholarly journals Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avital Shushan ◽  
Mickey Kosloff

AbstractThe interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.

2021 ◽  
Vol 67 (3) ◽  
pp. 251-258
Author(s):  
A.E. Kniga ◽  
I.V. Polyakov ◽  
A.V. Nemukhin

Effective personalized immunotherapies of the future will need to capture not only the peculiarities of the patient’s tumor but also of his immune response to it. In this study, using results of in vitro high-throughput specificity assays, and combining comparative models of pMHCs and TCRs using molecular docking, we have constructed all-atom models for the putative complexes of all their possible pairwise TCR-pMHC combinations. For the models obtained we have calculated a dataset of physics-based scores and have trained binary classifiers that perform better compared to their solely sequence-based counterparts. These structure-based classifiers pinpoint the most prominent energetic terms and structural features characterizing the type of protein-protein interactions that underlies the immune recognition of tumors by T cells.


2019 ◽  
Vol 16 (12) ◽  
pp. 4775-4786 ◽  
Author(s):  
Priyanka Singh ◽  
Aisling Roche ◽  
Christopher F. van der Walle ◽  
Shahid Uddin ◽  
Jiali Du ◽  
...  

The Copley Medal is awarded to Professor Dorothy M. C. Hodgkin, O. M., F. R. S. Professor Dorothy Hodgkin is distinguished for her research on the structure of complex organic molecules by the method of X-ray crystallography. She was among the first to appreciate the importance of heavy-atom phase-determining methods and these she used to effect the first complete determination of the stereochemistry of a sterol derivative in her analysis of cholesteryl iodide. The same powerful method of analysis and in particular her extraordinary gift of being able to interpret correctly the complex, partially resolved and often misleading electron density patterns that are first obtained, have been responsible for her success in elucidating the structures of many other important natural products, especially penicillin and vitamin B 12 . This last is by far the most beautiful and complex analysis which has yet been completed in this field and it is of fundamental importance to chemical science. In recent years Professor Hodgkin’s main interest has been devoted to the structure of insulin, on which she has been working on and off since 1935. Carried out with characteristic precision, this work has become a mine of stereochemical information relating to contacts between polypeptide chains and is of great significance for our interpretation of protein-protein interactions.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 177-188 ◽  
Author(s):  
Jianxing Song ◽  
Feng Ni

Using the design of bivalent and bridge-binding inhibitors of thrombin as an example, we review an NMR-based experimental approach for the design of functional mimetics of protein-protein interactions. The strategy includes: (i) identification of binding residues in peptide ligands by differential resonance perturbation, (ii) determination of protein-bound structures of peptide ligands by use of transferred NOEs, (iii) minimization of larger protein and peptide ligands on the basis of NMR structural information, and (iv) linkage of two weakly binding mimetics to produce an inhibitor with enhanced affinity and specificity. This approach can be especially effective for the design of potent and selective functional mimetics of protein-protein interactions because it is less likely that the surfaces of two related proteins or enzymes share two identical binding sites or regions.Key words: NMR, protein-protein interactions, functional mimetics, bridge-binding inhibitors, thrombin.


2005 ◽  
Vol 201 (4) ◽  
pp. 493-496 ◽  
Author(s):  
Myron F. Goodman ◽  
Matthew D. Scharff

Somatic hypermutation (SHM) in immunoglobulin genes is required for high affinity antibody–antigen binding. Cultured cell systems, mouse model systems, and human genetic deficiencies have been the key players in identifying likely SHM pathways, whereas “pure” biochemical approaches have been far less prominent, but change appears imminent. Here we comment on how, when, and why biochemistry is likely to emerge from the shadows and into the spotlight to elucidate how the somatic mutation of antibody variable (V) regions is generated.


2001 ◽  
Vol 11 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Andreas Schmarda ◽  
Friedrich Fresser ◽  
Martin Gschwentner ◽  
Johannes Fürst ◽  
Markus Ritter ◽  
...  

2009 ◽  
Vol 16 (10) ◽  
pp. 1049-1055 ◽  
Author(s):  
Kalia Bernath Levin ◽  
Orly Dym ◽  
Shira Albeck ◽  
Shlomo Magdassi ◽  
Anthony H Keeble ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document