scholarly journals The Flipside of Eradicating a Disease; Human African Trypanosomiasis in a Woman in Rural Democratic Republic of Congo: A Case Report

2019 ◽  
Vol 4 (4) ◽  
pp. 142 ◽  
Author(s):  
Junior Mudji ◽  
Jonathan Benhamou ◽  
Erick Mwamba-Miaka ◽  
Christian Burri ◽  
Johannes Blum

Human African Trypanosomiasis (HAT) is a neglected disease caused by the protozoan parasites Trypanosoma brucei and transmitted by tsetse flies that progresses in two phases. Symptoms in the first phase include fever, headaches, pruritus, lymphadenopathy, and in certain cases, hepato- and splenomegaly. Neurological disorders such as sleep disorder, aggressive behavior, logorrhea, psychotic reactions, and mood changes are signs of the second stage of the disease. Diagnosis follows complex algorithms, including serological testing and microscopy. Our case report illustrates the course of events of a 41-year old woman with sleep disorder, among other neurological symptoms, whose diagnosis was made seven months after the onset of symptoms. The patient had consulted two different hospitals in Kinshasa and was on the verge of being discharged from a third due to negative laboratory test results. This case report highlights the challenges that may arise when a disease is on the verge of eradication.

2021 ◽  
Author(s):  
Christopher N Davis ◽  
Matt J Keeling ◽  
Kat S Rock

Stochastic methods for modelling disease dynamics enables the direct computation of the probability of elimination of transmission (EOT). For the low-prevalence disease of human African trypanosomiasis (gHAT), we develop a new mechanistic model for gHAT infection that determines the full probability distribution of the gHAT infection using Kolmogorov forward equations. The methodology allows the analytical investigation of the probabilities of gHAT elimination in the spatially-connected villages of the Kwamouth and Mosango health zones of the Democratic Republic of Congo, and captures the uncertainty using exact methods. We predict that, if current active and passive screening continue at current levels, local elimination of infection will occur in 2029 for Mosango and after 2040 in Kwamouth, respectively. Our method provides a more realistic approach to scaling the probability of elimination of infection between single villages and much larger regions, and provides results comparable to established models without the requirement of detailed infection structure. The novel flexibility allows the interventions in the model to be implemented specific to each village, and this introduces the framework to consider the possible future strategies of test-and-treat or direct treatment of individuals living in villages where cases have been found, using a new drug.


Author(s):  
August Stich

Human African trypanosomiasis (HAT, sleeping sickness) is caused by two subspecies of the protozoan parasite Trypanosoma brucei: T. b. rhodesiense is prevalent in East Africa among many wild and domestic mammals; T. b. gambiense causes an anthroponosis in Central and West Africa. The disease is restricted to tropical Africa where it is transmitted by the bite of infected tsetse flies (...


2020 ◽  
pp. 1451-1459
Author(s):  
Reto Brun ◽  
Johannes Blum

Human African trypanosomiasis (sleeping sickness) is caused by subspecies of the protozoan parasite Trypanosoma brucei. The disease is restricted to tropical Africa where it is transmitted by the bite of infected tsetse flies (Glossina spp.). Control programmes in the 1960s were very effective, but subsequent relaxation of control measures led to recurrence of epidemic proportions in the 1980s and 1990s. Control is now being regained. Untreated human African trypanosomiasis is almost invariably fatal. Specific treatment depends on the trypanosome subspecies and the stage of the disease. Drugs used for stage 1 include pentamidine and suramin, and for stage 2 include melarsoprol, eflornithine, and nifurtimox, but regimens are not standardized, and treatment is difficult and dangerous; all of the drugs used have many side effects, some potentially lethal.


2019 ◽  
Vol 4 (Suppl 3) ◽  
pp. A35.3-A36
Author(s):  
Lukusa Ngay ◽  
Veerle Lejon ◽  
Mumba Ngoyi

IntroductionHuman African trypanosomiasis (HAT) is caused by Trypanosoma brucei gambiense and rhodesiense and is transmitted to humans by tsetse flies in sub-Saharan Africa. To detect cure or treatment failure, patients are followed up after treatment integrating the use of biomarkers in blood or cerebrospinal fluid (CSF).MethodsA systematic review of the literature according to the PRISMA Statement for Reporting Systematic Reviews was done, focusing on biological markers for HAT post-treatment follow-up. Articles were retrieved from PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) by using keywords: Human African Trypanosomiasis, Biomarkers, Follow up, Post treatment.ResultsA panel of biomarkers is used to detect relapses or to confirm recovery. For post-treatment follow-up, an examination of the CSF is performed. White blood cell counts in CSF with a defined cut-off value have been proven to be the most accurate to assess the treatment outcome. The intrathecal immunoglobulin M synthesis is a specific and sensitive parameter for the detection of CNS involvement in cases of HAT caused by T. brucei gambiense. The decrease of trypanosome-specific antibodies concentrations in CSF could be a good parameter for definite cure. High CSF IL-10 levels during treatment follow-up indicate recurring CNS inflammation and treatment failure. An increase of Neopterin in CSF and the presence of trypanosome spliced leader RNA in the blood have a high potential as predictors for treatment failure but need further validation.ConclusionNew biomarkers for post-treatment follow-up in HAT should 1) have high diagnostic specificity and sensitivity; 2) be applicable in field conditions; 3) preferentially be performed on blood and thus avoid the painful lumbar puncture during post-treatment control visits; and 4) shorten the follow-up period.


2016 ◽  
Vol 61 (4) ◽  
Author(s):  
Lefils Kasiama Ndilu ◽  
Mathilde Bothale Ekila ◽  
Donald Fundji Mayuma ◽  
Alain Musaka ◽  
Roger Wumba ◽  
...  

AbstractBlood safety is a major element in the strategy to control the HIV epidemic. The aim of this study was to determine the prevalence and the associated factors of a positive HIV test among blood donors and its association between Human African Trypanosomiasis in Kikwit, the Democratic Republic of Congo. A cross-sectional study was conducted between November 2012 and May 2013. An anonymous questionnaire was designed to extract relevant data. The average mean age of participants was 30 years. The majority were man (67.8%). The overall prevalence of HIV, syphilis, hepatitis B, hepatitis C and human African trypanosomiasis was respectively 3.2%, 1.9%, 1.6%, 1.3% and 1.3%. Alcohol intake, casual unprotected sex, not using condoms during casual sex, sex after alcohol intake and seroprevalence of human African trypanosomiasis were significantly associated with a positive HIV test result ( p<0.05). In this study, sexual risk behaviors were the major risk factors associated with positive HIV tests in blood donors living in Kikwit. It is important to raise awareness about HIV and voluntary blood donation in response to some observations noted in this study such as the low educational level of the blood donors, the low level of knowledge of HIV prevention methods.


2011 ◽  
Vol 57 (8) ◽  
pp. 1108-1117 ◽  
Author(s):  
W Greg Miller ◽  
Gary L Myers ◽  
Mary Lou Gantzer ◽  
Stephen E Kahn ◽  
E Ralf Schönbrunner ◽  
...  

Abstract Results between different clinical laboratory measurement procedures (CLMP) should be equivalent, within clinically meaningful limits, to enable optimal use of clinical guidelines for disease diagnosis and patient management. When laboratory test results are neither standardized nor harmonized, a different numeric result may be obtained for the same clinical sample. Unfortunately, some guidelines are based on test results from a specific laboratory measurement procedure without consideration of the possibility or likelihood of differences between various procedures. When this happens, aggregation of data from different clinical research investigations and development of appropriate clinical practice guidelines will be flawed. A lack of recognition that results are neither standardized nor harmonized may lead to erroneous clinical, financial, regulatory, or technical decisions. Standardization of CLMPs has been accomplished for several measurands for which primary (pure substance) reference materials exist and/or reference measurement procedures (RMPs) have been developed. However, the harmonization of clinical laboratory procedures for measurands that do not have RMPs has been problematic owing to inadequate definition of the measurand, inadequate analytical specificity for the measurand, inadequate attention to the commutability of reference materials, and lack of a systematic approach for harmonization. To address these problems, an infrastructure must be developed to enable a systematic approach for identification and prioritization of measurands to be harmonized on the basis of clinical importance and technical feasibility, and for management of the technical implementation of a harmonization process for a specific measurand.


Author(s):  
Ronald E Crump ◽  
Ching-I Huang ◽  
Ed Knock ◽  
Simon E F Spencer ◽  
Paul Brown ◽  
...  

AbstractGambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically.In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions. We present a Bayesian fitting methodology, applied to 168 endemic health zones (∼ 100,000 population size), which allows for calibration of mechanistic gHAT model to case data (from the World Health Organization HAT Atlas) in an adaptive and automated framework.It was found that the model needed to capture improvements in passive detection to match observed trends in the data within former Bandundu and Bas Congo provinces indicating these regions have substantially reduced time to detection. Health zones in these provinces generally had longer burn-in periods during fitting due to additional model parameters.Posterior probability distributions were found for a range of fitted parameters in each health zone; these included the basic reproduction number estimates for pre-1998 (R0) which was inferred to be between 1 and 1.19, in line with previous gHAT estimates, with higher median values typically in health zones with more case reporting in the 2000s.Previously, it was not clear whether a fall in active case finding in the period contributed to the declining case numbers. The modelling here accounts for variable screening and suggests that underlying transmission has also reduced greatly – on average 96% in former Equateur, 93% in former Bas Congo and 89% in former Bandundu – Equateur and Bandundu having had the highest case burdens in 2000. This analysis also sets out a framework to enable future predictions for the country.Author summaryGambiense human African trypanosomiasis (gHAT; sleeping sickness) is a deadly disease targeted for elimination by 2030, however there are still several unknowns about what factors influence continued transmission and how this changes with geographic location.In this study we focus on the Democratic Republic of Congo (DRC), which reported 84% of the global cases in 2016 to try and explain why some regions of the country have had more success than others in bringing down case burden. To achieve this we used a state-of-the-art statistical framework to match a mathematical gHAT model to reported case data for 168 regions with some case reporting during 2000–2016.The analysis indicates that two former provinces, Bandundu and Bas Congo had substantial improvements to case detection in fixed health facilities in the time period. Overall, all provinces were estimated to have reductions in (unobservable) transmission including ∼ 96% in former Equateur. This is reassuring as case finding effort has decreased in that region.The model fitting presented here will allow predictions of gHAT under future strategies to be performed in the future.


Sign in / Sign up

Export Citation Format

Share Document