scholarly journals The Evolution of Research on Abundances of Solar Energetic Particles

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 292
Author(s):  
Donald V. Reames

Sixty years of study of energetic particle abundances have made a major contribution to our understanding of the physics of solar energetic particles (SEPs) or solar cosmic rays. An early surprise was the observation in small SEP events of huge enhancements in the isotope 3He from resonant wave–particle interactions, and the subsequent observation of accompanying enhancements of heavy ions, later found to increase 1000-fold as a steep power of the mass-to-charge ratio A/Q, right across the elements from H to Pb. These “impulsive” SEP events have been related to magnetic reconnection on open field lines in solar jets; similar processes occur on closed loops in flares, but those SEPs are trapped and dissipate their energy in heat and light. After early controversy, it was established that particles in the large “gradual” SEP events are accelerated at shock waves driven by wide, fast coronal mass ejections (CMEs) that expand broadly. On average, gradual SEP events give us a measure of element abundances in the solar corona, which differ from those in the photosphere as a classic function of the first ionization potential (FIP) of the elements, distinguishing ions and neutrals. Departures from the average in gradual SEPs are also power laws in A/Q, and fits of this dependence can determine Q values and thus estimate source plasma temperatures. Complications arise when shock waves reaccelerate residual ions from the impulsive events, but excess protons and the extent of abundance variations help to resolve these processes. Yet, specific questions about SEP abundances remain.

Atoms ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 104 ◽  
Author(s):  
Donald V. Reames

From a turbulent history, the study of the abundances of elements in solar energetic particles (SEPs) has grown into an extensive field that probes the solar corona and physical processes of SEP acceleration and transport. Underlying SEPs are the abundances of the solar corona, which differ from photospheric abundances as a function of the first ionization potentials (FIPs) of the elements. The FIP-dependence of SEPs also differs from that of the solar wind; each has a different magnetic environment, where low-FIP ions and high-FIP neutral atoms rise toward the corona. Two major sources generate SEPs: The small “impulsive” SEP events are associated with magnetic reconnection in solar jets that produce 1000-fold enhancements from H to Pb as a function of mass-to-charge ratio A/Q, and also 1000-fold enhancements in 3He/4He that are produced by resonant wave-particle interactions. In large “gradual” events, SEPs are accelerated at shock waves that are driven out from the Sun by wide, fast coronal mass ejections (CMEs). A/Q dependence of ion transport allows us to estimate Q and hence the source plasma temperature T. Weaker shock waves favor the reacceleration of suprathermal ions accumulated from earlier impulsive SEP events, along with protons from the ambient plasma. In strong shocks, the ambient plasma dominates. Ions from impulsive sources have T ≈ 3 MK; those from ambient coronal plasma have T = 1 – 2 MK. These FIP- and A/Q-dependences explore complex new interactions in the corona and in SEP sources.


Author(s):  
Donald V. Reames

Abstract3He-rich, Fe-rich, and enriched in elements with Z > 50, the abundances of solar energetic particles (SEPs) from the small impulsive SEP events stand out as luminaries in our study. The 3He is enhanced by resonant wave-particle interactions. Element abundances increase 1000-fold as the ~3.6 power of the mass-to-charge ratio A/Q from He to heavy elements like Au or Pb, enhanced during acceleration in islands of magnetic reconnection in solar jets, and probably also in flares. This power-law of enhancement vs. A/Q implies Q determined by a source temperature of 2.5–3.2 MK, typical of jets from solar active regions where these impulsive SEPs occur. However, a few small events are unusual; several have suppressed 4He, and rarely, a few very small events with steep spectra have elements N or S greatly enhanced, perhaps by the same resonant-wave mechanism that enhances 3He. Which mechanism will dominate? The impulsive SEP events we see are associated with narrow CMEs, from solar jets where magnetic reconnection on open field lines gives energetic particles and CMEs direct access to space. Gamma-ray lines tell us that the same acceleration physics may occur in flares.


2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Donald V. Reames

AbstractSixty years ago the first observation was published showing solar energetic particles (SEPs) with a sampling of chemical elements with atomic numbers $6 \leq Z \leq 18$ 6 ≤ Z ≤ 18 above 40 MeV amu−1. Thus began study of the direct products of dynamic physics in the solar corona. As we have progressed from 4-min sounding-rocket samples to continuous satellite coverage of SEP events, we have extended the observations to the unusual distribution of element abundances throughout the periodic table. Small “impulsive” SEP events from islands of magnetic reconnection on open magnetic-field lines in solar jets generate huge enhancements in abundances of 3He and of the heaviest elements, enhancements increasing as a power of the ion mass-to-charge ratio as ($A$ A /$Q$ Q )3.6, on average. Solar flares involve the same physics but there the SEPs are trapped on closed loops, expending their energy as heat and light. The larger, energetic “gradual” SEP events are accelerated at shock waves driven by fast, wide coronal mass ejections (CMEs). However, these shocks can also reaccelerate ions from pools of residual suprathermal impulsive ions, and CMEs from jets can also drive fast shocks, complicating the picture. The underlying element abundances in SEP events represent the solar corona, which differs from corresponding abundances in the photosphere as a function of the first ionization potential (FIP) of the elements, distinguishing low-FIP (<10 eV) ions from high-FIP neutral atoms as they expand through the chromosphere. Differences in FIP patterns of SEPs and the solar wind may distinguish closed- and open-field regions of formation at the base of the corona. Dependence of SEP acceleration upon $A$ A /$Q$ Q allows best-fit estimation of ion $Q$ Q -values and hence of the source plasma temperature of ∼1 – 3 MK, derived from abundances, which correlates with recent measures of temperatures using extreme ultraviolet emission from jets. Thus, element abundances in SEPs have become a powerful tool to study the underlying solar corona and to probe physical processes of broad astrophysical significance, from the “FIP effect” to magnetic reconnection and shock acceleration. New questions arise, however, about the theoretical basis of correlations of energy-spectral indices with power-laws of abundances, about the coexistence of separate resonant and non-resonant mechanisms for enhancements of 3He and of heavy elements, about occasional events with unusual suppression of He and about the overall paucity of C in FIP comparisons.


Author(s):  
Donald V. Reames

The early 1970s saw a new and surprising feature in the composition of solar energetic particles (SEPs), resonant enhancements up to 10,000-fold in the ratio 3He/4He that could even make 3He dominant over H in rare events. It was soon learned that these events also had enhancements in the abundances of heavier elements, such as a factor of ∼10 enhancements in Fe/O, which was later seen to be part of a smooth increase in enhancements vs. mass-to-charge ratio A/Q from H to Pb, rising by a factor of ∼1000. These events were also associated with streaming 10–100 keV electrons that produce type III radio bursts. In recent years we have found these “impulsive” SEP events to be accelerated in islands of magnetic reconnection from plasma temperatures of 2–3 MK on open field lines in solar jets. Similar reconnection on closed loops traps the energy of the particles to produce hot (&gt;10 MK), bright flares. Sometimes impulsive SEP intensities are boosted by shock waves when the jets launch fast coronal mass ejections. No single theory yet explains both the sharp resonance in 3He and the smooth increase up to heavier elements; two processes seem to occur. Sometimes the efficient acceleration even exhausts the rare 3He in the source region, limiting its fluence.


2021 ◽  
Author(s):  
David Ruffolo ◽  
Rohit Chhiber ◽  
William H. Matthaeus ◽  
Arcadi V. Usmanov ◽  
Paisan Tooprakai ◽  
...  

&lt;p&gt;The random walk of magnetic field lines is an important ingredient in understanding how the connectivity of the magnetic field affects the spatial transport and diffusion of charged particles. As solar energetic particles (SEPs) propagate away from near-solar sources, they interact with the fluctuating magnetic field, which modifies their distributions. We develop a formalism in which the differential equation describing the field line random walk contains both effects due to localized magnetic displacements and a non-stochastic contribution from the large-scale expansion. We use this formalism together with a global magnetohydrodynamic simulation of the inner-heliospheric solar wind, which includes a turbulence transport model, to estimate the diffusive spreading of magnetic field lines that originate in different regions of the solar atmosphere. We first use this model to quantify field line spreading at 1 au, starting from a localized solar source region, and find rms angular spreads of about 20 &amp;#8211; 60 degrees. In the second instance, we use the model to estimate the size of the source regions from which field lines observed at 1 au may have originated, thus quantifying the uncertainty in calculations of magnetic connectivity; the angular uncertainty is estimated to be about 20 degrees. Finally, we estimate the filamentation distance, i.e., the heliocentric distance up to which field lines originating in magnetic islands can remain strongly trapped in filamentary structures. We emphasize the key role of slab-like fluctuations in the transition from filamentary to more diffusive transport at greater heliocentric distances. This research has been supported in part by grant RTA6280002 from Thailand Science Research and Innovation and the Parker Solar Probe mission under the ISOIS project (contract NNN06AA01C) and a subcontract to University of Delaware from Princeton University (SUB0000165). &amp;#160;MLG acknowledges support from the Parker Solar Probe FIELDS MAG team. &amp;#160;Additional support is acknowledged from the&amp;#160; NASA LWS program&amp;#160; (NNX17AB79G) and the HSR program (80NSSC18K1210 &amp; 80NSSC18K1648).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document