scholarly journals The Porcine Deltacoronavirus Replication Organelle Comprises Double-Membrane Vesicles and Zippered Endoplasmic Reticulum with Double-Membrane Spherules

Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1030 ◽  
Author(s):  
Nicole Doyle ◽  
Philippa C. Hawes ◽  
Jennifer Simpson ◽  
Lorin H. Adams ◽  
Helena J. Maier

Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus–host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.

2019 ◽  
Author(s):  
Nicole Doyle ◽  
Philippa C. Hawes ◽  
Jennifer Simpson ◽  
Lorin H. Adams ◽  
Helena J. Maier

AbstractPorcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea and the virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to begin to address questions regarding virus-host cell interactions for this genera of coronavirus. Here we present a detailed study of PDCoV induced replication organelles. All positive strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta- and Gammacoronavirus genera have been characterized. However the structures induced by deltacoronaviruses, in particular the presence of convoluted membranes or double membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis and progeny particle release determined. Subsequently, virus induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double membrane vesicles. Significantly however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum and small associated tethered vesicles, double membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Helena J. Maier ◽  
Philippa C. Hawes ◽  
Eleanor M. Cottam ◽  
Judith Mantell ◽  
Paul Verkade ◽  
...  

ABSTRACTReplication of positive-sense RNA viruses is associated with the rearrangement of cellular membranes. Previous work on the infection of tissue culture cell lines with the betacoronaviruses mouse hepatitis virus and severe acute respiratory syndrome coronavirus (SARS-CoV) showed that they generate double-membrane vesicles (DMVs) and convoluted membranes as part of a reticular membrane network. Here we describe a detailed study of the membrane rearrangements induced by the avian gammacoronavirus infectious bronchitis virus (IBV) in a mammalian cell line but also in primary avian cells and in epithelial cells ofex vivotracheal organ cultures. In all cell types, structures novel to IBV infection were identified that we have termed zippered endoplasmic reticulum (ER) and spherules. Zippered ER lacked luminal space, suggesting zippering of ER cisternae, while spherules appeared as uniform invaginations of zippered ER. Electron tomography showed that IBV-induced spherules are tethered to the zippered ER and that there is a channel connecting the interior of the spherule with the cytoplasm, a feature thought to be necessary for sites of RNA synthesis but not seen previously for membrane rearrangements induced by coronaviruses. We also identified DMVs in IBV-infected cells that were observed as single individual DMVs or were connected to the ER via their outer membrane but not to the zippered ER. Interestingly, IBV-induced spherules strongly resemble confirmed sites of RNA synthesis for alphaviruses, nodaviruses, and bromoviruses, which may indicate similar strategies of IBV and these diverse viruses for the assembly of RNA replication complexes.IMPORTANCEAll positive-sense single-stranded RNA viruses induce rearranged cellular membranes, providing a platform for viral replication complex assembly and protecting viral RNA from cellular defenses. We have studied the membrane rearrangements induced by an important poultry pathogen, the gammacoronavirus infectious bronchitis virus (IBV). Previous work studying closely related betacoronaviruses identified double-membrane vesicles (DMVs) and convoluted membranes (CMs) derived from the endoplasmic reticulum (ER) in infected cells. However, the role of DMVs and CMs in viral RNA synthesis remains unclear because these sealed vesicles lack a means of delivering viral RNA to the cytoplasm. Here, we characterized structures novel to IBV infection: zippered ER and small vesicles tethered to the zippered ER termed spherules. Significantly, spherules contain a channel connecting their interior to the cytoplasm and strongly resemble confirmed sites of RNA synthesis for other positive-sense RNA viruses, making them ideal candidates for the site of IBV RNA synthesis.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Ronald W. A. L. Limpens ◽  
Hilde M. van der Schaar ◽  
Darshan Kumar ◽  
Abraham J. Koster ◽  
Eric J. Snijder ◽  
...  

ABSTRACTAll positive-strand RNA viruses induce membrane structures in their host cells which are thought to serve as suitable microenvironments for viral RNA synthesis. The structures induced by enteroviruses, which are members of the familyPicornaviridae, have so far been described as either single- or double-membrane vesicles (DMVs). Aside from the number of delimiting membranes, their exact architecture has also remained elusive due to the limitations of conventional electron microscopy. In this study, we used electron tomography (ET) to solve the three-dimensional (3-D) ultrastructure of these compartments. At different time points postinfection, coxsackievirus B3-infected cells were high-pressure frozen and freeze-substituted for ET analysis. The tomograms showed that during the exponential phase of viral RNA synthesis, closed smooth single-membrane tubules constituted the predominant virus-induced membrane structure, with a minor proportion of DMVs that were either closed or connected to the cytosol in a vase-like configuration. As infection progressed, the DMV number steadily increased, while the tubular single-membrane structures gradually disappeared. Late in infection, complex multilamellar structures, previously unreported, became apparent in the cytoplasm. Serial tomography disclosed that their basic unit is a DMV, which is enwrapped by one or multiple cisternae. ET also revealed striking intermediate structures that strongly support the conversion of single-membrane tubules into double-membrane and multilamellar structures by a process of membrane apposition, enwrapping, and fusion. Collectively, our work unravels the sequential appearance of distinct enterovirus-induced replication structures, elucidates their detailed 3-D architecture, and provides the basis for a model for their transformation during the course of infection.IMPORTANCEPositive-strand RNA viruses hijack specific intracellular membranes and remodel them into special structures that support viral RNA synthesis. The ultrastructural characterization of these “replication structures” is key to understanding their precise role. Here, we resolved the three-dimensional architecture of enterovirus-induced membranous compartments and their transformation in time by applying electron tomography to cells infected with coxsackievirus B3 (CVB3). Our results show that closed single-membrane tubules are the predominant initial virus-induced structure, whereas double-membrane vesicles (DMVs) become increasingly abundant at the expense of these tubules as infection progresses. Additionally, more complex multilamellar structures appear late in infection. Based on compelling intermediate structures in our tomograms, we propose a model for transformation from the tubules to DMVs and multilamellar structures via enwrapping events. Our work provides an in-depth analysis of the development of an unsuspected variety of distinct replication structures during the course of CVB3 infection.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00420-18 ◽  
Author(s):  
C. E. Melia ◽  
H. M. van der Schaar ◽  
A. W. M. de Jong ◽  
H. R. Lyoo ◽  
E. J. Snijder ◽  
...  

ABSTRACTPicornaviruses induce dramatic rearrangements of endomembranes in the cells that they infect to produce dedicated platforms for viral replication. These structures, termed replication organelles (ROs), have been well characterized for theEnterovirusgenus of thePicornaviridae. However, it is unknown whether the diverse RO morphologies associated with enterovirus infection are conserved among other picornaviruses. Here, we use serial electron tomography at different stages of infection to assess the three-dimensional architecture of ROs induced by encephalomyocarditis virus (EMCV), a member of theCardiovirusgenus of the family of picornaviruses that is distantly related. Ultrastructural analyses revealed connections between early single-membrane EMCV ROs and the endoplasmic reticulum (ER), establishing the ER as a likely donor organelle for their formation. These early single-membrane ROs appear to transform into double-membrane vesicles (DMVs) as infection progresses. Both single- and double-membrane structures were found to support viral RNA synthesis, and progeny viruses accumulated in close proximity, suggesting a spatial association between RNA synthesis and virus assembly. Further, we explored the role of phosphatidylinositol 4-phosphate (PI4P), a critical host factor for both enterovirus and cardiovirus replication that has been recently found to expedite enterovirus RO formation rather than being strictly required. By exploiting an EMCV escape mutant, we found that low-PI4P conditions could also be overcome for the formation of cardiovirus ROs. Collectively, our data show that despite differences in the membrane source, there are striking similarities in the biogenesis, morphology, and transformation of cardiovirus and enterovirus ROs, which may well extend to other picornaviruses.IMPORTANCELike all positive-sense RNA viruses, picornaviruses induce the rearrangement of host cell membranes to form unique structures, or replication organelles (ROs), that support viral RNA synthesis. Here, we investigate the architecture and biogenesis of cardiovirus ROs and compare them with those induced by enteroviruses, members of the well-characterized picornavirus genusEnterovirus. The origins and dynamic morphologies of cardiovirus ROs are revealed using electron tomography, which points to the endoplasmic reticulum as the donor organelle usurped to produce single-membrane tubules and vesicles that transform into double-membrane vesicles. We show that PI4P, a critical lipid for cardiovirus and enterovirus replication, is not strictly required for the formation of cardiovirus ROs, as functional ROs with typical morphologies are formed under phosphatidylinositol 4-kinase type III alpha (PI4KA) inhibition in cells infected with an escape mutant. Our data show that the transformation from single-membrane structures to double-membrane vesicles is a conserved feature of cardiovirus and enterovirus infections that likely extends to other picornavirus genera.


2002 ◽  
Vol 76 (8) ◽  
pp. 3697-3708 ◽  
Author(s):  
Rainer Gosert ◽  
Amornrat Kanjanahaluethai ◽  
Denise Egger ◽  
Kurt Bienz ◽  
Susan C. Baker

ABSTRACT The replication complexes (RCs) of positive-stranded RNA viruses are intimately associated with cellular membranes. To investigate membrane alterations and to characterize the RC of mouse hepatitis virus (MHV), we performed biochemical and ultrastructural studies using MHV-infected cells. Biochemical fractionation showed that all 10 of the MHV gene 1 polyprotein products examined pelleted with the membrane fraction, consistent with membrane association of the RC. Furthermore, MHV gene 1 products p290, p210, and p150 and the p150 cleavage product membrane protein 1 (MP1, also called p44) were resistant to extraction with Triton X-114, indicating that they are integral membrane proteins. The ultrastructural analysis revealed double-membrane vesicles (DMVs) in the cytoplasm of MHV-infected cells. The DMVs were found either as separate entities or as small clusters of vesicles. To determine whether MHV proteins and viral RNA were associated with the DMVs, we performed immunocytochemistry electron microscopy (IEM). We found that the DMVs were labeled using an antiserum directed against proteins derived from open reading frame 1a of MHV. By electron microscopy in situ hybridization (ISH) using MHV-specific RNA probes, DMVs were highly labeled for both gene 1 and gene 7 sequences. By combined ISH and IEM, positive-stranded RNA and viral proteins localized to the same DMVs. Finally, viral RNA synthesis was detected by labeling with 5-bromouridine 5′-triphosphate. Newly synthesized viral RNA was found to be associated with the DMVs. We conclude from these data that the DMVs carry the MHV RNA replication complex and are the site of MHV RNA synthesis.


1999 ◽  
Vol 73 (3) ◽  
pp. 2016-2026 ◽  
Author(s):  
Ketil W. Pedersen ◽  
Yvonne van der Meer ◽  
Norbert Roos ◽  
Eric J. Snijder

ABSTRACT The replicase of equine arteritis virus (EAV; familyArteriviridae, order Nidovirales) is expressed in the form of two polyproteins (the open reading frame 1a [ORF1a] and ORF1ab proteins). Three viral proteases cleave these precursors into 12 nonstructural proteins, which direct both genome replication and subgenomic mRNA transcription. Immunofluorescence assays showed that most EAV replicase subunits localize to membranes in the perinuclear region of the infected cell. Using replicase-specific antibodies and cryoimmunoelectron microscopy, unusual double-membrane vesicles (DMVs) were identified as the probable site of EAV RNA synthesis. These DMVs were previously observed in cells infected with different arteriviruses but were never implicated in viral RNA synthesis. Extensive electron microscopic analysis showed that they appear to be derived from paired endoplasmic reticulum membranes and that they are most likely formed by protrusion and detachment of vesicular structures with a double membrane. Interestingly, very similar membrane rearrangements were observed upon expression of ORF1a-encoded replicase subunits nsp2 to nsp7 from an alphavirus-based expression vector. Apparently, the formation of a membrane-bound scaffold for the replication complex is a distinct step in the arterivirus life cycle, which is directed by the ORF1a protein and does not depend on other viral proteins and/or EAV-specific RNA synthesis.


Author(s):  
Eric J. Snijder ◽  
Ronald W.A.L. Limpens ◽  
Adriaan H. de Wilde ◽  
Anja W. M. de Jong ◽  
Jessika C. Zevenhoven-Dobbe ◽  
...  

AbstractZoonotic coronavirus (CoV) infections, like those responsible for the current SARS-CoV-2 epidemic, cause grave international public health concern. In infected cells, the CoV RNA-synthesizing machinery associates with modified endoplasmic reticulum membranes that are transformed into the viral replication organelle (RO). While double-membrane vesicles (DMVs) appear to be a pan-coronavirus RO element, studies to date describe an assortment of additional coronavirus-induced membrane structures. Despite much speculation, it remains unclear which RO element(s) accommodate viral RNA synthesis. Here we provide detailed 2D and 3D analyses of CoV ROs and show that diverse CoVs essentially induce the same membrane modifications, including the small open double-membrane spherules (DMSs) previously thought to be restricted to gamma- and delta-CoV infections and proposed as sites of replication. Metabolic labelling of newly-synthesized viral RNA followed by quantitative EM autoradiography revealed abundant viral RNA synthesis associated with DMVs in cells infected with the beta-CoVs MERS-CoV and SARS-CoV, and the gamma-CoV infectious bronchitis virus. RNA synthesis could not be linked to DMSs or any other cellular or virus-induced structure. Our results provide a unifying model of the CoV RO and clearly establish DMVs as the central hub for viral RNA synthesis and a potential drug target in coronavirus infection.


Science ◽  
2020 ◽  
Vol 369 (6509) ◽  
pp. 1395-1398 ◽  
Author(s):  
Georg Wolff ◽  
Ronald W. A. L. Limpens ◽  
Jessika C. Zevenhoven-Dobbe ◽  
Ulrike Laugks ◽  
Shawn Zheng ◽  
...  

Coronavirus genome replication is associated with virus-induced cytosolic double-membrane vesicles, which may provide a tailored microenvironment for viral RNA synthesis in the infected cell. However, it is unclear how newly synthesized genomes and messenger RNAs can travel from these sealed replication compartments to the cytosol to ensure their translation and the assembly of progeny virions. In this study, we used cellular cryo–electron microscopy to visualize a molecular pore complex that spans both membranes of the double-membrane vesicle and would allow export of RNA to the cytosol. A hexameric assembly of a large viral transmembrane protein was found to form the core of the crown-shaped complex. This coronavirus-specific structure likely plays a key role in coronavirus replication and thus constitutes a potential drug target.


2018 ◽  
Vol 92 (8) ◽  
Author(s):  
Maija K. Pietilä ◽  
Martijn J. van Hemert ◽  
Tero Ahola

ABSTRACTPositive-strand RNA viruses replicate their genomes in membrane-associated structures; alphaviruses and many other groups induce membrane invaginations called spherules. Here, we established a protocol to purify these membranous replication complexes (RCs) from cells infected with Semliki Forest virus (SFV). We isolated SFV spherules located on the plasma membrane and further purified them using two consecutive density gradients. This revealed that SFV infection strongly modifies cellular membranes. We removed soluble proteins, the Golgi membranes, and most of the mitochondria, but plasma membrane, endoplasmic reticulum (ER), and late endosome markers were retained in the membrane fraction that contained viral RNA synthesizing activity, replicase proteins, and minus- and plus-strand RNA. Electron microscopy revealed that the purified membranes displayed spherule-like structures with a narrow neck. This membrane enrichment was specific to viral replication, as such a distribution of membrane markers was only observed after infection. Besides the plasma membrane, SFV infection remodeled the ER, and the cofractionation of the RC-carrying plasma membrane and ER suggests that SFV recruits ER proteins or membrane to the site of replication. The purified RCs were highly active in synthesizing both genomic and subgenomic RNA. Detergent solubilization destroyed the replication activity, demonstrating that the membrane association of the complex is essential. Most of the newly made RNA was in double-stranded replicative molecules, but the purified complexes also produced single-stranded RNA as well as released newly made RNA. This indicates that the purification established here maintained the functionality of RCs and thus enables further structural and functional studies of active RCs.IMPORTANCESimilar to all positive-strand RNA viruses, the arthropod-borne alphaviruses induce membranous genome factories, but little is known about the arrangement of viral replicase proteins and the presence of host proteins in these replication complexes. To improve our knowledge of alphavirus RNA-synthesizing complexes, we isolated and purified them from infected mammalian cells. Detection of viral RNA andin vitroreplication assays revealed that these complexes are abundant and highly active when located on the plasma membrane. After multiple purification steps, they remain functional in synthesizing and releasing viral RNA. Besides the plasma membrane, markers for the endoplasmic reticulum and late endosomes were enriched with the replication complexes, demonstrating that alphavirus infection modified cellular membranes beyond inducing replication spherules on the plasma membrane. We have developed here a gentle purification method to obtain large quantities of highly active replication complexes, and similar methods can be applied to other positive-strand RNA viruses.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Inés Romero-Brey ◽  
Carola Berger ◽  
Stephanie Kallis ◽  
Androniki Kolovou ◽  
David Paul ◽  
...  

ABSTRACTInduction of membrane rearrangements in the cytoplasm of infected cells is a hallmark of positive-strand RNA viruses. These altered membranes serve as scaffolds for the assembly of viral replication factories (RFs). We have recently shown that hepatitis C virus (HCV) infection induces endoplasmic reticulum-derived double-membrane vesicles (DMVs) representing the major constituent of the RF within the infected cell. RF formation requires the concerted action of nonstructural action of nonstructural protein (NS)3, -4A, protein (NS)3 -4A, -4B, -5A, and -5B. Although the sole expression of NS5A is sufficient to induce DMV formation, its efficiency is very low. In this study, we dissected the determinants within NS5A responsible for DMV formation and found that RNA-binding domain 1 (D1) and the amino-terminal membrane anchor are indispensable for this process. In contrast, deletion of NS5A D2 or D3 did not affect DMV formation but disrupted RNA replication and virus assembly, respectively. To identifycis- andtrans-acting factors of DMV formation, we established atranscleavage assay. We found that induction of DMVs requires full-length NS3, whereas a helicase-lacking mutant was unable to trigger DMV formation in spite of efficient polyprotein cleavage. Importantly, a mutation accelerating cleavage kinetics at the NS4B-5A site diminished DMV formation, while the insertion of an internal ribosome entry site mimicking constitutive cleavage at this boundary completely abolished this process. These results identify key determinants governing the biogenesis of the HCV RF with possible implications for our understanding of how RFs are formed in other positive-strand RNA viruses.IMPORTANCELike all positive-strand RNA viruses, hepatitis C virus (HCV) extensively reorganizes intracellular membranes to allow efficient RNA replication. Double-membrane vesicles (DMVs) that putatively represent sites of HCV RNA amplification are induced by the concerted action of viral and cellular factors. However, the contribution of individual proteins to this process remains poorly understood. Here we identify determinants in the HCV replicase that are required for DMV biogenesis. Major contributors to this process are domain 1 of nonstructural protein 5A and the helicase domain of nonstructural protein 3. In addition, efficient DMV induction depends onciscleavage of the viral polyprotein, as well as tightly regulated cleavage kinetics. These results identify key determinants governing the biogenesis of the HCV replication factory with possible implications for our understanding of how this central compartment is formed in other positive-strand RNA viruses.


Sign in / Sign up

Export Citation Format

Share Document