scholarly journals SOX2 Represses Hepatitis B Virus Replication by Binding to the Viral EnhII/Cp and Inhibiting the Promoter Activation

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 273
Author(s):  
Hua Yang ◽  
Jiayin Mo ◽  
Qi Xiang ◽  
Peiyi Zhao ◽  
Yunting Song ◽  
...  

Hepatitis B virus (HBV) replication is controlled by four promoters (preS1, preS2, Cp, and Xp) and two enhancers (EnhI and EnhII). EnhII stimulates Cp activity to regulate the transcriptions of precore, core, polymerase, and pregenomic RNAs, and therefore, EnhII/Cp is essential for the regulation of HBV replication. This study revealed a distinct mechanism underlying the suppression of EnhII/Cp activation and HBV replication. On the one hand, the sex determining region Y box2 (SOX2), a transcription factor, is induced by HBV. On the other hand, SOX2, in turn, represses the expression levels of HBV RNAs, HBV core-associated DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg), thereby playing an inhibitory role during HBV replication. Further studies indicated that SOX2 bound to the EnhII/Cp DNA and repressed the promoter activation. With the deletion of the high mobility group (HMG) domain, SOX2 loses the ability to repress EnhII/Cp activation, viral RNA transcription, HBV core-associated DNA replication, HBsAg and HBeAg production, as well as fails to enter the nucleus, demonstrating that the HMG domain is required for the SOX2-mediated repression of HBV replication. Moreover, SOX2 represses HBsAg and HBeAg secretion in BALB/c mice sera, and attenuates HBV 3.5 kb RNA transcription and hepatitis B virus core protein (HBc) production in the liver tissues, demonstrating that SOX2 suppresses HBV replication in mice. Furthermore, the results revealed that the HMG domain was required for SOX2-mediated repression of HBV replication in the mice. Taken together, the above facts indicate that SOX2 acts as a new host restriction factor to repress HBV replication by binding to the viral EnhII/Cp and inhibiting the promoter activation through the HMG domain.

2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Sujeong Lee ◽  
Hyunyoung Yoon ◽  
Jiwoo Han ◽  
Kyung Lib Jang

Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.


2009 ◽  
Vol 83 (10) ◽  
pp. 4923-4933 ◽  
Author(s):  
Mayra L. Garcia ◽  
Rushelle Byfield ◽  
Michael D. Robek

ABSTRACT Ubiquitin conjugation to lysine residues regulates a variety of protein functions, including endosomal trafficking and degradation. While ubiquitin plays an important role in the release of many viruses, the requirement for direct ubiquitin conjugation to viral structural proteins is less well understood. Some viral structural proteins require ubiquitin ligase activity, but not ubiquitin conjugation, for efficient release. Recent evidence has shown that, like other viruses, hepatitis B virus (HBV) requires a ubiquitin ligase for release from the infected cell. The HBV core protein contains two lysine residues (K7 and K96), and K96 has been suggested to function as a potential ubiquitin acceptor site based on the fact that previous studies have shown that mutation of this amino acid to alanine blocks HBV release. We therefore reexamined the potential connection between core lysine ubiquitination and HBV replication, protein trafficking, and virion release. In contrast to alanine substitution, we found that mutation of K96 to arginine, which compared to alanine is more conserved but also cannot mediate ubiquitin conjugation, does not affect either virus replication or virion release. We also found that the core lysine mutants display wild-type sensitivity to the antiviral activity of interferon, which demonstrates that ubiquitination of core lysines does not mediate the interferon-induced disruption of HBV capsids. However, mutation of K96 to arginine alters the nuclear-cytoplasmic distribution of core, leading to an accumulation in the nucleolus. In summary, these studies demonstrate that although ubiquitin may regulate the HBV replication cycle, these mechanisms function independently of direct lysine ubiquitination of core protein.


Author(s):  
Wenyu Wu ◽  
Di Wu ◽  
Weiming Yan ◽  
Yongli Wang ◽  
Jie You ◽  
...  

Abstract Background Interferon alfa (IFN-α) has been proved effective in treating chronic hepatitis B (CHB), owing to its ability to suppress hepatitis B surface antigen and hepatitis B virus (HBV) covalently closed circular DNA. However, the underlying mechanisms are unclear. Methods We investigated the antiviral activities of exosomes from responders and nonresponders to pegylated IFN-α (PegIFN-α) as well as the supernatants of IFN-α–treated macrophages derived from THP-1 (the human leukemia monocyte cell line). Then the expression profiles of exosomal microRNAs (miRNAs) were analyzed using miRNA sequencing. The luciferase reporter assay was used to locate the binding position of HBV genomic sequence targeted by the identified miRNA. Results Exosomes from PegIFN-α–treated patients, particularly responders, as well as the supernatants of IFN-α–treated macrophages exhibited anti-HBV activities, as manifested by the suppression of hepatitis B surface antigen, hepatitis B e antigen, HBV DNA, and covalently closed circular DNA levels in HBV-related cell lines. PegIFN-α treatment up-regulated exosomal hsa-miR-193a-5p, hsa-miR-25-5p, and hsa-miR-574-5p, which could partially inhibit HBV replication and transcription, and hsa-miR-574-5p reduced pregenomic RNA and polymerase messenger RNA levels by binding to the 2750–2757 position of the HBV genomic sequence. Conclusions Exosomes can transfer IFN-α–related miRNAs from macrophages to HBV-infected hepatocytes, and they exhibit antiviral activities against HBV replication and expression.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 457 ◽  
Author(s):  
Jun Inoue ◽  
Takuya Nakamura ◽  
Atsushi Masamune

Reactivation of hepatitis B virus (HBV) is a major problem in patients receiving chemotherapy for malignant diseases or immunosuppression therapies. It has been thought that a reduction in the immune responses might result in the reactivation of HBV replication from covalently closed circular DNA (cccDNA) residing in hepatocytes. However, not only the host’s immune status, but also viral mutations have been reported to be associated with reactivation. Especially, several case reports about amino acid mutations in hepatitis B surface antigen (HBsAg) that escape from immune reactions have been reported, and recent reports showed that the frequencies of such mutations are higher than previously expected. In this review, we summarize the characteristics of viral mutations, including immune escape mutations in HBV-reactivated patients, and discuss their significance.


2005 ◽  
Vol 79 (15) ◽  
pp. 9810-9820 ◽  
Author(s):  
Margherita Melegari ◽  
Sarah K. Wolf ◽  
Robert J. Schneider

ABSTRACT The hepatitis B virus (HBV) core protein forms the capsid of viral particles and is essential for viral genome DNA replication and maturation. The C terminus of core protein contains three serines at positions 155, 162, and 170, phosphorylation of which is important for viral DNA replication. We demonstrate that the phosphorylation of these serines is stimulated by the viral HBx protein, a regulatory protein that activates signal transduction pathways and viral replication. HBx is therefore shown to stimulate HBV replication by increasing core serine phosphorylation. Mutational, biochemical, and mixing studies of C-terminal core serine mutants demonstrate that multiple serine phosphorylations occur on the same core protein. Mutation of individual core protein serines is shown to inhibit HBV replication at distinct stages corresponding to encapsidation of viral pregenomic RNA, reverse transcription, and restriction to synthesis of specific DNA replicative intermediates. We therefore demonstrate that a primary target of HBV replication that is regulated by HBx protein corresponds to increased phosphorylation of the viral core protein. We also demonstrate that core phosphorylation mediated by HBx promotes sequential progression of viral replication through the assembly of capsids primed for different stages of DNA synthesis.


2011 ◽  
Vol 9 (5) ◽  
pp. 465-477 ◽  
Author(s):  
Bhumsuk Keam ◽  
Jeong-Hoon Lee ◽  
Seock-Ah Im ◽  
Jung-Hwan Yoon

Hepatitis B virus (HBV) reactivation is a serious clinical problem in HBV carriers undergoing chemotherapy. The clinical course of HBV reactivation can be separated into 2 phases: 1) an increase in HBV replication and 2) hepatic injury. Patients with resolved HBV infections (negative for hepatitis B surface antigen [HBsAg], and positive for both hepatitis B core antibody [anti-HBc] and/or hepatitis B surface antibody) can experience HBV reactivation, and Western guidelines recommend that not only HBsAg but also anti-HBc be screened before initiation of chemotherapy or immunosuppressive therapy. Several meta-analyses have repeatedly confirmed the prophylactic role of lamivudine in preventing HBV reactivation. In conclusion, screening for HBV is required before chemotherapy, and prophylactic antiviral therapy can reduce not only the incidence of HBV reactivation but also HBV-related morbidity and mortality.


1998 ◽  
Vol 72 (9) ◽  
pp. 7692-7696 ◽  
Author(s):  
Stefanie Grethe ◽  
Masyar Monazahian ◽  
Ingo Böhme ◽  
Reiner Thomssen

ABSTRACT Hepatitis B virus DNA was extracted from serial serum samples of a hepatitis B surface antigen-negative patient with antibodies to the core protein as the only marker of an infection with hepatitis B virus. This patient showed no symptoms of hepatic injury. Sequencing of the amplified viral DNA demonstrated multiple amino acid changes clustering in surface-exposed regions of the surface protein. Synthesis and association of the middle (M) and small (S) surface proteins could be shown in vitro. The variant surface antigens were recognized neither by monoclonal antibodies to the surface antigen nor by the vaccinee’s sera. Consequences for hepatitis B surface antigen testing and vaccine development are discussed.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008593
Author(s):  
Hélène Chabrolles ◽  
Héloïse Auclair ◽  
Serena Vegna ◽  
Thomas Lahlali ◽  
Caroline Pons ◽  
...  

Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies.


2002 ◽  
Vol 83 (5) ◽  
pp. 991-996 ◽  
Author(s):  
Kurt Reifenberg ◽  
Petra Nusser ◽  
Jürgen Löhler ◽  
Gabriele Spindler ◽  
Christa Kuhn ◽  
...  

The function of the X protein (pX) in the replication cycle of mammalian hepadnaviruses is enigmatic. Using tissue culture experiments it has been shown that the X gene product is not central to hepatitis B virus (HBV) replication and virion export. However, at present it is still unclear whether this also applies to the in vivo situation. Using a terminally redundant X-deficient HBV DNA construct, transgenic mice were established that exhibited high-level expression of the viral core protein in liver and kidneys. Importantly, replicative DNA intermediates and mature viral genomes could be detected in the liver and serum of these mice, respectively. These findings indicate that, in the in vivo model of transgenic mice, the HBV X (HBx) gene product is not required for HBV replication and virion secretion.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yasuteru Kondo ◽  
Masashi Ninomiya ◽  
Eiji Kakazu ◽  
Osamu Kimura ◽  
Tooru Shimosegawa

Various findings concerning the clinical significance of quantitative changes in hepatitis B surface antigen (HBsAg) during the acute and chronic phase of hepatitis B virus (HBV) infection have been reported. In addition to being a biomarker of HBV-replication activity, it has been reported that HBsAg could contribute to the immunopathogenesis of HBV persistent infection. Moreover, HBsAg could become an attractive target for immune therapy, since the cellular and humeral immune response against HBsAg might be able to control the HBV replication and life cycle. However, several reports have described the immune suppressive function of HBsAg. HBsAg might suppress monocytes, dendritic cells (DCs), natural killer (NK), and natural killer T (NK-T) cells by direct interaction. On the other hand, cytotoxic T lymphocytes (CTLs) and helper T (Th) cells were exhausted by high amounts of HBsAg. In this paper, we focused on the immunological aspects of HBsAg, since better understanding of the interaction between HBsAg and immune cells could contribute to the development of an immune therapy as well as a biomarker of the state of HBV persistent infection.


Sign in / Sign up

Export Citation Format

Share Document