scholarly journals The Determination of HIV-1 RT Mutation Rate, Its Possible Allosteric Effects, and Its Implications on Drug Resistance

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 297 ◽  
Author(s):  
Joshua Yi Yeo ◽  
Ghin-Ray Goh ◽  
Chinh Tran-To Su ◽  
Samuel Ken-En Gan

The high mutation rate of the human immunodeficiency virus type 1 (HIV-1) plays a major role in treatment resistance, from the development of vaccines to therapeutic drugs. In addressing the crux of the issue, various attempts to estimate the mutation rate of HIV-1 resulted in a large range of 10−5–10−3 errors/bp/cycle due to the use of different types of investigation methods. In this review, we discuss the different assay methods, their findings on the mutation rates of HIV-1 and how the locations of mutations can be further analyzed for their allosteric effects to allow for new inhibitor designs. Given that HIV is one of the fastest mutating viruses, it serves as a good model for the comprehensive study of viral mutations that can give rise to a more horizontal understanding towards overall viral drug resistance as well as emerging viral diseases.

Author(s):  
Joshua Yi Yeo ◽  
Ghin Ray Goh ◽  
Chinh Tran-To Su ◽  
Samuel Ken-En Gan

The high mutation rate of human immunodeficiency virus type 1 (HIV-1) plays a major role in treatment resistance from the development of vaccines to long-lasting drugs. In addressing the crux of the issue, various attempts to estimate the mutation rate of HIV-1 resulted in a large range of 10-5 - 10-3 errors/bp/cycle due to the use of different types of investigation methods. In this review, we discuss the different assay methods, their findings on the mutation rates of HIV-1 and how the location of these mutations can be further analyzed for their potential allosteric effects to reveal potentially new inhibitors with different pharmacodynamics that can be used to circumvent fast occurring HIV drug resistance. Given that HIV is one of the fastest mutating viruses, it is a good model for comprehensive study of its mutations that can give rise to much horizontal understanding towards overall viral drug resistance as well as emerging viral diseases.


2000 ◽  
Vol 74 (20) ◽  
pp. 9532-9539 ◽  
Author(s):  
Louis M. Mansky ◽  
Lisa C. Bernard

ABSTRACT How antiretroviral drug resistance influences human immunodeficiency virus type 1 (HIV-1) evolution is not clear. This study tested the hypothesis that antiretroviral drugs such as 3′-azido-3′-deoxythymidine (AZT) can influence the in vivo mutation rate of HIV-1. It was observed that AZT can increase the rate of HIV-1 mutation by a factor of 7 in a single round of replication. In addition, (−)2′,3′-dideoxy-3′-thiacytidine (3TC) was also found to increase the mutation rate of HIV-1 by a factor of 3. It was also found that HIV-1 drug-resistant reverse transcriptase (RT) variants can influence the in vivo mutation rate. Replication of HIV-1 with AZT-resistant RTs increased the mutation rate by as much as a factor of 3, while replication of HIV-1 with a 3TC-resistant RT (M184V) had no significant effect on the mutation rate. It was observed that only high-level, AZT-resistant RT variants could influence the in vivo mutation rate (i.e., M41L/T215Y and M41L/D67N/K70R/T215Y). In total, these observations indicate that both antiretroviral drugs and drug resistance mutations can influence the in vivo mutation rate of HIV-1.


2020 ◽  
Vol 17 (6) ◽  
pp. 397-407
Author(s):  
Maryam Jarchi ◽  
Farah Bokharaei-Salim ◽  
Maryam Esghaei ◽  
Seyed Jalal Kiani ◽  
Fatemeh Jahanbakhsh ◽  
...  

Background: The advent of resistance-associated mutations in HIV-1 is a barrier to the success of the ARTs. Objective: In this study, the abundance of HIV-1 infection in Iranian children, and also detection of the TDR in naïve HIV-1 infected pediatric (under 12 years old) were evaluated. Materials: From June 2014 to January 2019, a total of 544 consecutive treatment-naïve HIV-1- infected individuals enrolled in this study. After RNA extraction, amplification, and sequencing of the HIV-1 pol gene, the DRM and phylogenetic analysis were successfully performed on the plasma specimens of the ART-naïve HIV-1-infected-children under 12 years old. The DRMs were recognized using the Stanford HIV Drug Resistance Database. Results: Out of the 544 evaluated treatment-naïve HIV-1-infected individuals, 15 (2.8%) cases were children under 12 years old. The phylogenetic analyses of the amplified region of pol gene indicated that all of the 15 HIV-1-infected pediatric patients were infected by CRF35_AD, and a total of 13.3% (2/15) of these children were infected with HIV-1 variants with SDRMs (one child harbored two related SDRMs [D67N, V179F], and another child had three related SDRMs [M184V, T215F, and K103N]), according to the last algorithm of the WHO. No PIs-related SDRMs were observed in HIV-1-infected children. Conclusion: The current study demonstrated that a total of 13.3% of treatment-naïve HIV-1-infected Iranian pediatrics (under 12 years old) were infected with HIV-1 variants with SDRMs. Therefore, it seems that screening to recognize resistance-associated mutations before the initiation of ARTs among Iranian children is essential for favorable medication efficacy and dependable prognosis.


Intervirology ◽  
2014 ◽  
Vol 57 (5) ◽  
pp. 297-299 ◽  
Author(s):  
Özlem Yoldaş ◽  
Ali Ağaçfidan ◽  
Nadine Lübke ◽  
Ayper Somer ◽  
Selda Hançerli ◽  
...  

2000 ◽  
Vol 74 (15) ◽  
pp. 7039-7047 ◽  
Author(s):  
Louis M. Mansky ◽  
Sandra Preveral ◽  
Luc Selig ◽  
Richard Benarous ◽  
Serge Benichou

ABSTRACT The Vpr protein of human immunodeficiency virus type 1 (HIV-1) influences the in vivo mutation rate of the virus. Since Vpr interacts with a cellular protein implicated in the DNA repair process, uracil DNA glycosylase (UNG), we have explored the contribution of this interaction to the mutation rate of HIV-1. Single-amino-acid variants of Vpr were characterized for their differential UNG-binding properties and used to trans complement vpr null mutant HIV-1. A striking correlation was established between the abilities of Vpr to interact with UNG and to influence the HIV-1 mutation rate. We demonstrate that Vpr incorporation into virus particles is required to influence the in vivo mutation rate and to mediate virion packaging of the nuclear form of UNG. The recruitment of UNG into virions indicates a mechanism for how Vpr can influence reverse transcription accuracy. Our data suggest that distinct mechanisms evolved in primate and nonprimate lentiviruses to reconcile uracil misincorporation into lentiviral DNA.


2019 ◽  
Vol 25 (2) ◽  
pp. 253.e1-253.e4 ◽  
Author(s):  
M. Stecher ◽  
A. Chaillon ◽  
A.M. Eis-Hübinger ◽  
C. Lehmann ◽  
G. Fätkenheuer ◽  
...  

Author(s):  
Serge Theophile Soubeiga ◽  
Bapio Valéry Jean Telesphore Elvira Bazie ◽  
Tegwindé Rebeca Compaore ◽  
Abdoul Karim Ouattara ◽  
Théodora Mahoukèdè Zohoncon ◽  
...  

The emergence of HIV-1 drug resistance (HIVDR) is a public health problem that affects women and children. Local data of HIVDR is critical to improving their care and treatment. So, we investigated HIVDR in mothers and infants receiving antiretroviral therapy (ART) at Saint Camille Hospital of Ouagadougou, Burkina Faso. This study included 50 mothers and 50 infants on ART. CD4 and HIV-1 viral load were determined using FACSCount and Abbott m2000rt respectively. HIVDR was determined in patients with virologic failure using ViroSeq HIV-1 Genotyping System kit on the 3130 Genetic Analyzer. The median age was 37.28 years in mothers and 1.58 year in infants. Sequencing of samples showed subtypes CRF02_AG (55.56%), CRF06_cpx (33.33%) and G (11.11%). M184V was the most frequent and was associated with highlevel resistance to 3TC, FTC, and ABC. Other mutations such as T215F/Y, D67N/E, K70R, and K219Q were associated with intermediate resistance to TDF, AZT, and 3TC. No mutation to LPV/r was detected among mothers and infants. The findings of HIVDR in some mothers and infants suggested the change of treatment for these persons.


1996 ◽  
Vol 284 (2-3) ◽  
pp. 457-465
Author(s):  
Maria Wichers ◽  
Rolf Kaiser ◽  
Jürgen Rockstroh ◽  
Bertfried Matz ◽  
Karl E. Schneweis

2020 ◽  
Vol 221 (12) ◽  
pp. 1962-1972 ◽  
Author(s):  
Philip L Tzou ◽  
Diane Descamps ◽  
Soo-Yon Rhee ◽  
Dana N Raugi ◽  
Charlotte Charpentier ◽  
...  

Abstract Background HIV-1 and HIV-2 differ in their antiretroviral (ARV) susceptibilities and drug resistance mutations (DRMs). Methods We analyzed published HIV-2 pol sequences to identify HIV-2 treatment-selected mutations (TSMs). Mutation prevalences were determined by HIV-2 group and ARV status. Nonpolymorphic mutations were those in <1% of ARV-naive persons. TSMs were those associated with ARV therapy after multiple comparisons adjustment. Results We analyzed protease (PR) sequences from 483 PR inhibitor (PI)-naive and 232 PI-treated persons; RT sequences from 333 nucleoside RT inhibitor (NRTI)-naive and 252 NRTI-treated persons; and integrase (IN) sequences from 236 IN inhibitor (INSTI)-naive and 60 INSTI-treated persons. In PR, 12 nonpolymorphic TSMs occurred in ≥11 persons: V33I, K45R, V47A, I50V, I54M, T56V, V62A, A73G, I82F, I84V, F85L, L90M. In RT, 9 nonpolymorphic TSMs occurred in ≥10 persons: K40R, A62V, K70R, Y115F, Q151M, M184VI, S215Y. In IN, 11 nonpolymorphic TSMs occurred in ≥4 persons: Q91R, E92AQ, T97A, G140S, Y143G, Q148R, A153G, N155H, H156R, R231 5-amino acid insertions. Nine of 32 nonpolymorphic TSMs were previously unreported. Conclusions This meta-analysis confirmed the ARV association of previously reported HIV-2 DRMs and identified novel TSMs. Genotypic and phenotypic studies of HIV-2 TSMs will improve approaches to predicting HIV-2 ARV susceptibility and treating HIV-2–infected persons.


Sign in / Sign up

Export Citation Format

Share Document