scholarly journals Identification of a Neutralizing Monoclonal Antibody That Recognizes a Unique Epitope on Domain III of the Envelope Protein of Tembusu Virus

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 647 ◽  
Author(s):  
Shenghua Qu ◽  
Xiaoyan Wang ◽  
Lixin Yang ◽  
Junfeng Lv ◽  
Runze Meng ◽  
...  

Domain III of the envelope protein (EDIII) is the major target of flavivirus neutralizing antibody. To date, little is known regarding antibody-mediated neutralization of Tembusu virus (TMUV), a novel flavivirus emerging in duck in 2010. Here, a novel monoclonal antibody (MAb), designated 12F11, was prepared by immunization of mice with recombinant EDIII (rEDIII) protein. Using virus neutralization test, 12F11 in undiluted ascites neutralized the TMUV infectivity to induce the development of cytopathic effects in BHK-21 cells, indicating that 12F11 exhibits a neutralizing activity. The neutralizing activity of 12F11 was confirmed by plaque reduction neutralization test, in which 12F11 reduced significantly the number of plaques produced by TMUV in BHK-21 cells. Western blot analyses of a series of truncated rEDIII proteins showed that the epitope recognized by 12F11 includes amino acids between residues 8 and 77 of EDIII protein. Function analysis demonstrated that 12F11 neutralizes TMUV infection at virus adsorption and at a step after adsorption to a certain extent. The present study provides an important step towards elucidating antibody-mediated neutralization of TMUV.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hitoshi Kawasuji ◽  
Yoshitomo Morinaga ◽  
Hideki Tani ◽  
Miyuki Kimura ◽  
Hiroshi Yamada ◽  
...  

AbstractAdaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics remain largely unknown. The neutralizing antibody (NAb) levels in patients with coronavirus disease 2019 (COVID-19) are helpful for understanding the pathology. Using SARS-CoV-2 pseudotyped virus, serum sample neutralization values in symptomatic COVID-19 patients were measured using the chemiluminescence reduction neutralization test (CRNT). At least two sequential serum samples collected during hospitalization were analyzed to assess NAbs neutralizing activity dynamics at different time points. Of the 11 patients, four (36.4%), six (54.5%), and one (9.1%) had moderate, severe, and critical disease, respectively. Fifty percent neutralization (N50%-CRNT) was observed upon admission in 90.9% (10/11); all patients acquired neutralizing activity 2–12 days after onset. In patients with moderate disease, neutralization was observed at earliest within two days after symptom onset. In patients with severe-to-critical disease, neutralization activity increased, plateauing 9–16 days after onset. Neutralization activity on admission was significantly higher in patients with moderate disease than in patients with severe-to-critical disease (relative % of infectivity, 6.4% vs. 41.1%; P = .011). Neutralization activity on admission inversely correlated with disease severity. The rapid NAb response may play a crucial role in preventing the progression of COVID-19.


2021 ◽  
pp. 198582
Author(s):  
Shenghua Qu ◽  
Xiaoyan Wang ◽  
Lixin Yang ◽  
Runze Meng ◽  
Chonglun Feng ◽  
...  

2008 ◽  
Vol 70 (3) ◽  
pp. 1116-1119 ◽  
Author(s):  
Kuo‐Chun Huang ◽  
Ming‐Che Lee ◽  
Chih‐Wei Wu ◽  
Kao‐Jean Huang ◽  
Huan‐Yao Lei ◽  
...  

2005 ◽  
Vol 79 (17) ◽  
pp. 11095-11104 ◽  
Author(s):  
Ania Owsianka ◽  
Alexander W. Tarr ◽  
Vicky S. Juttla ◽  
Dimitri Lavillette ◽  
Birke Bartosch ◽  
...  

ABSTRACT Hepatitis C virus (HCV) remains a significant threat to the general health of the world's population, and there is a pressing need for the development of new treatments and preventative vaccines. Here, we describe the generation of retrovirus-based pseudoparticles (HCVpp) incorporating a panel of full-length E1E2 clones representative of the major genotypes 1 through 6, and their application to assess the reactivity and neutralizing capability of antisera and monoclonal antibodies raised against portions of the HCV E2 envelope protein. Rabbit antisera raised against either the first hypervariable region or ectodomain of E2 showed limited and strain specific neutralization. By contrast, the monoclonal antibody (MAb) AP33 demonstrated potent neutralization of infectivity against HCVpp carrying E1E2 representative of all genotypes tested. The concentration of AP33 required to achieve 50% inhibition of infection by HCVpp of diverse genotypes ranged from 0.6 to 32 μg/ml. The epitope recognized by MAb AP33 is linear and highly conserved across different genotypes of HCV. Thus, identification of a broadly neutralizing antibody that recognizes a linear epitope is likely to be of significant benefit to future vaccine and therapeutic antibody development.


2021 ◽  
pp. 198601
Author(s):  
Huan Hu ◽  
Rongfei Liu ◽  
Qianlin Li ◽  
Jin Wang ◽  
Qiang Deng ◽  
...  

2021 ◽  
Author(s):  
Hitoshi Kawasuji ◽  
Yoshitomo Morinaga ◽  
Hideki Tani ◽  
Miyuki Kimura ◽  
Hiroshi Yamada ◽  
...  

AbstractIntroductionAdaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics remain largely unknown. The neutralizing antibody (NAb) levels in patients with coronavirus disease 2019 (COVID-19) are helpful for understanding the pathology.Patients and MethodsUsing SARS-CoV-2 pseudotyped virus, serum sample neutralization values in symptomatic COVID-19 patients were measured using the chemiluminescence reduction neutralization test (CRNT). At least two sequential serum samples collected during hospitalization were analyzed to assess NAbs neutralizing activity dynamics at different time points.ResultsOf the 11 patients, four (36.4%), six (54.5%), and one (9.1%) had moderate, severe, and critical disease, respectively. Fifty percent neutralization (N50%-CRNT) was observed upon admission in 90.9% (10/11); all patients acquired neutralizing activity 2–12 days after onset. In patients with moderate disease, neutralization was observed at earliest within two days after symptom onset. In patients with severe-to-critical disease, neutralization activity increased, plateauing 9–16 days after onset. Neutralization activity on admission was significantly higher in patients with moderate disease than in patients with severe-to-critical disease (relative % of infectivity, 6.4% vs. 41.1%; P=.0011).ConclusionsNeutralization activity on admission inversely correlated with disease severity. The rapid NAb response may play a crucial role in preventing the progression of COVID-19.


2014 ◽  
Vol 95 (10) ◽  
pp. 2155-2165 ◽  
Author(s):  
Peng-Yeh Lai ◽  
Chia-Tse Hsu ◽  
Shao-Hung Wang ◽  
Jin-Ching Lee ◽  
Min-Jen Tseng ◽  
...  

Dengue virus (DENV; genus Flavivirus) contains a positive-stranded RNA genome. Binding of DENV to host cells is mediated through domain III of the viral envelope protein. Many therapeutic mAbs against domain III have been generated and characterized because of its high antigenicity. We have previously established a novel PCR method named the linear array epitope (LAE) technique for producing monoclone-like polyclonal antibodies. To prove this method could be utilized to produce antibody against epitopes with low antigenicity, a region of 10 aa (V365NIEAEPPFG374) from domain III of the envelope protein in DENV serotype 2 (DENV2) was selected to design the primers for the LAE technique. A DNA fragment encoding 10 directed repeats of these 10 aa for producing the tandem-repeated peptides was obtained and fused with glutathione S-transferase (GST)-containing vector. This fusion protein (GST-Den EIII10-His6) was purified from Escherichia coli and used as antigen for immunizing rabbits to obtain the polyclonal antibody. Furthermore, the EIII antibody could recognize envelope proteins either ectopically overexpressed or synthesized by DENV2 infection using Western blot and immunofluorescence assays. Most importantly, this antibody was also able to detect DENV2 virions by ELISA, and could block viral entry into BHK-21 cells as shown by immunofluorescence and quantitative real-time PCR assays. Taken together, the LAE technique could be applied successfully for the production of antibodies against antigens with low antigenicity, and shows high potential to produce antibodies with good quality for academic research, diagnosis and even therapeutic applications in the future.


Sign in / Sign up

Export Citation Format

Share Document