scholarly journals Comparison and Evaluation of Real-Time Taqman PCR for Detection and Quantification of Ebolavirus

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1575
Author(s):  
Yi Huang ◽  
Shuqi Xiao ◽  
Zhiming Yuan

Given that ebolavirus causes severe and frequently lethal disease, its rapid and accurate detection using available and validated methods is essential for controlling infection. Real-time reverse-transcription PCR (RT-PCR) has proven to be an invaluable tool for ebolaviruses diagnostics. Many assays with different targets have been developed, but they have not been externally compared or validated, and limits of detection are not uniformly reported. Here we compared and evaluated the sensitivity, reproducibility and specificity of 23 in-house assays under the same conditions. Our results showed that these assays were highly gene- and species- specific when evaluated using in vitro RNA transcripts and viral RNA, and the potential limits of detection were uniformly reported ranging from 102 to 106 in vitro synthesized RNA transcripts copies perμL and 1–100 TCID50/mL. The comparison of these assays indicated that those targeting the more conservative NP gene could be the better option for EVD case definition and quantitative measurement because of its higher sensitivity for the same species. Our analysis could contribute to the standardization of ebolavirus detection and quantification assays, which can offer a better understanding of the meaning of results across laboratories and time points, as well as make them easy to implement, especially under outbreak conditions.

2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Nancy Gerloff ◽  
Hong Sun ◽  
Mark Mandelbaum ◽  
Chelsea Maher ◽  
W. Allan Nix ◽  
...  

ABSTRACTWith poliovirus eradication nearing, few pockets of active wild poliovirus (WPV) transmission remain in the world. Intratypic differentiation (ITD) plays a crucial part in laboratory surveillance as the molecular detection method that can identify and distinguish wild and vaccine-like polioviruses isolated from acute flaccid paralysis cases or environmental sources. The need to detect new variants of WPV serotype 1 (WPV1) and the containment of all serotype 2 polioviruses (PV2) in 2015 required changes to the previous version of the method. The ITD version 5.0 is a set of six real-time reverse transcription-PCR (rRT-PCR) assays that serve as accurate diagnostic tools to easily detect and differentiate PV serotypes and genotypes. We describe the creation and properties of quantitation standards, including 16 control RNA transcripts and nine plaque-isolated viruses. All ITD rRT-PCR assays were validated using these standards, and the limits of detection were determined for each assay. We designed and pilot tested two new assays targeting recently circulating WPV1 genotypes and all PV2 viruses. The WPV1 assay had 99.1% specificity and 100% sensitivity, and the PV2 assay had 97.7% specificity and 92% sensitivity. Before proceeding to the next step in the global poliovirus eradication program, we needed to gain a better understanding of the performance of the ITD 5.0 suite of molecular assays and their limits of detection and specificities. The findings and conclusions in this evaluation serve as building blocks for future development work.


2021 ◽  
Author(s):  
Haibin Ma ◽  
Yahui Li ◽  
Junzheng Yang

Objectives: To develop a sensitive, highly specific fluorescent quantitative real-time PCR assay for accurate detection and quantification of novel-goose parvovirus (N-GPV) in vitro and in vivo. Methods: Specific primers was designed based on N-GPV inverted terminal repeats region; virus RNA (DFV, NDV, AIV, DHV-1, DHV-3) and virus DNA (MDPV, GPV, N-GPV) were extracted, cDNA (DFV, NDV, AIV, DHV-1, DHV-3) were prepared from viral RNAs using M-MLV Reverse Transcriptase, and prepared cDNA (DFV, NDV, AIV, DHV-1, DHV-3) and DNA (MDPV, GPV, N-GPV) amplified by real-time PCR; the sensitivity, specificity and reproducibility of established real-time PCR methods were evaluated, and finally we validated the reliability of real-time PCR methods in ducklings models in vivo. Results: The standard curve of established real-time PCR had a good linearity (slope was -0.3098, Y-intercept was 37.865, efficiency of standard curve was 0.995); the detection limit of established real-time PCR for N-GPV was 10 copies/reaction. The sensitivity of real-time PCR was 10 copies/uL, which was 1000 times higher than conventional gel-based PCR assay. The results of intra-assay CVs (0.04-0.74%) and inter-assay CVs (0.16-0.53%) showed that the real-time PCR assay had an excellent repeatability. This method also could efficiently detect viral load in heart, liver, spleen, lung, kidney, pancreas, bursa of Fabricius, brain, blood and excrement from ducklings models after N-GPV infection from 6h to 28 days, which could provided us a dynamic distribution observation of N-GPV viral load using this real-time PCR assay in vivo. Conclusion: In the study, we developed a high sensitive, specific and reproducible real-time PCR assay for N-GPV detection. The established real-time PCR assay was suitable for parvovirus detection and quantification simultaneously, no matter sample obtained from blood, internal organs or ileac contents; the present work may provide insight into the pathogenesis of N-GPV and will contributes to better understanding of this newly emerged novel GPV related virus in cherry valley ducks.


2008 ◽  
Vol 76 (8) ◽  
pp. 3632-3639 ◽  
Author(s):  
Fabrice N. Gravelat ◽  
Thomas Doedt ◽  
Lisa Y. Chiang ◽  
Hong Liu ◽  
Scott G. Filler ◽  
...  

ABSTRACT Very little is known about the developmental stages of Aspergillus fumigatus during invasive aspergillosis. We performed real-time reverse transcription-PCR analysis on lung samples from mice with invasive pulmonary aspergillosis to determine the expression of A. fumigatus genes that are expressed at specific stages of development. In established infection, A. fumigatus exhibited mRNA expression of genes specific to developmentally competent hyphae, such as stuA. In contrast, mRNA of genes expressed by conidia and precompetent hyphae was not detected. Many genes required for mycotoxin synthesis, including aspHS, gliP, mitF, and metAP, are known to be expressed by developmentally competent hyphae in vitro. Interestingly, each of these genes was expressed at significantly higher levels during invasive infection than in vitro. The expression of gliP mRNA in vitro was found to be highly dependent on culture conditions. Furthermore, gliP expression was found to be dependent on the transcription factor StuA both in vitro and in vivo. Therefore, developmentally competent hyphae predominate during established invasive infection, and many mycotoxin genes are expressed at high levels in vivo. These results highlight the importance of the evaluation of putative virulence factors expressed by competent hyphae and analysis of gene expression levels during invasive infection rather than in vitro alone.


2004 ◽  
Vol 120 (1) ◽  
pp. 97-105 ◽  
Author(s):  
William L Schneider ◽  
Diana J Sherman ◽  
Andrew L Stone ◽  
Vernon D Damsteegt ◽  
Reid D Frederick

2007 ◽  
Vol 53 (11) ◽  
pp. 1899-1905 ◽  
Author(s):  
Marit Kramski ◽  
Helga Meisel ◽  
Boris Klempa ◽  
Detlev H Krüger ◽  
Georg Pauli ◽  
...  

Abstract Background: Because the clinical course of human infections with hantaviruses can vary from subclinical to fatal, rapid and reliable detection of hantaviruses is essential. To date, the diagnosis of hantavirus infection is based mainly on serologic assays, and the detection of hantaviral RNA by the commonly used reverse transcription (RT)-PCR is difficult because of high sequence diversity of hantaviruses and low viral loads in clinical specimens. Methods: We developed 5 real-time RT-PCR assays, 3 of which are specific for the individual European hantaviruses Dobrava, Puumala, or Tula virus. Two additional assays detect the Asian species Hantaan virus together with Seoul virus and the American species Andes virus together with Sin Nombre virus. Pyrosequencing was established to provide characteristic sequence information of the amplified hantavirus for confirmation of the RT-PCR results or for a more detailed virus typing. Results: The real-time RT-PCR assays were specific for the respective hantavirus species and optimized to run on 2 different platforms, the LightCycler and the ABI 7900/7500. Each assay showed a detection limit of 10 copies of a plasmid containing the RT-PCR target region, and pyrosequencing was possible with 10 to 100 copies per reaction. With this assay, viral genome could be detected in 16 of 552 (2.5%) specimens of suspected hantavirus infections of humans and mice. Conclusions: The new assays detect, differentiate, and quantify hantaviruses in clinical specimens from humans and from their natural hosts and may be useful for in vitro studies of hantaviruses.


2013 ◽  
Vol 103 (8) ◽  
pp. 802-810 ◽  
Author(s):  
Anita Haegi ◽  
Valentina Catalano ◽  
Laura Luongo ◽  
Salvatore Vitale ◽  
Michele Scotton ◽  
...  

A reliable and species-specific real-time quantitative polymerase chain reaction (qPCR) assay was developed for detection of the complex soilborne anamorphic fungus Fusarium oxysporum. The new primer pair, designed on the translation elongation factor 1-α gene with an amplicon of 142 bp, was highly specific to F. oxysporum without cross reactions with other Fusarium spp. The protocol was applied to grafted melon plants for the detection and quantification of F. oxysporum f. sp. melonis, a devastating pathogen of this cucurbit. Grafting technologies are widely used in melon to confer resistance against new virulent races of F. oxysporum f. sp. melonis, while maintaining the properties of valuable commercial varieties. However, the effects on the vascular pathogen colonization have not been fully investigated. Analyses were performed on ‘Charentais-T’ (susceptible) and ‘Nad-1’ (resistant) melon cultivars, both used either as rootstock and scion, and inoculated with F. oxysporum f. sp. melonis race 1 and race 1,2. Pathogen development was compared using qPCR and isolations from stem tissues. Early asymptomatic melon infections were detected with a quantification limit of 1 pg of fungal DNA. The qPCR protocol clearly showed that fungal development was highly affected by host–pathogen interaction (compatible or incompatible) and time (days postinoculation). The principal significant effect (P ≤ 0.01) on fungal development was due to the melon genotype used as rootstock, and this effect had a significant interaction with time and F. oxysporum f. sp. melonis race. In particular, the amount of race 1,2 DNA was significantly higher compared with that estimated for race 1 in the incompatible interaction at 18 days postinoculation. The two fungal races were always present in both the rootstock and scion of grafted plants in either the compatible or incompatible interaction.


2001 ◽  
Vol 47 (12) ◽  
pp. 2089-2097 ◽  
Author(s):  
Danuta Kielar ◽  
Wolfgang Dietmaier ◽  
Thomas Langmann ◽  
Charalampos Aslanidis ◽  
Mario Probst ◽  
...  

Abstract Background: The ABCA1 gene encodes for a member of subfamily A of the ATP-binding cassette transporters that plays an important role in cellular export of cholesterol and phospholipids; therefore, quantification of the ABCA1 mRNA is critical in many studies related to its expression and regulation by metabolic factors, nutritional status, and new antiatherogenic drug candidates. We developed a rapid, sensitive, specific, and reproducible real-time reverse transcription-PCR (RT-PCR) method for detection and quantification of ABCA1 transcripts in total RNA isolated from cultured human cells and tissues. Methods: To quantify ABCA1 mRNA, we generated a calibration curve from serial dilutions of in vitro-transcribed RNA corresponding to an amplified ABCA1 cDNA 205-bp fragment (homologous calibrator). Two pairs of fluorescent hybridization probes were used to detect the ABCA1 and porphobilinogen deaminase (PBGD) mRNAs; the latter served as an internal control. PCR was performed as real-time amplification of ABCA1 mRNA in 100 ng of total RNA isolated from various human tissues, and cultured cells were calculated from the calibration curve. In addition, normalized values of target (ABCA1/PBGD ratio) were calculated. Results: Using this method, we quantified ABCA1 transcripts in various human tissue samples as well as in monocytes, THP-1 cells, fibroblasts, and adipocytes. We demonstrated ABCA1 mRNA up-regulation during human adipocyte and monocyte differentiation. In addition, we examined the effect of cholesterol loading and deloading on ABCA1 expression in monocytes, THP-1 cells, and fibroblasts. Conclusions: Our RT-PCR assay allows the specific and highly reproducible detection and quantification of minute amounts of human ABCA1 mRNA. This new method is more accurate, more informative, and less laborious than the classic RT-PCR methods and Northern blot; it therefore could simplify all studies on ABCA1 mRNA expression.


Sign in / Sign up

Export Citation Format

Share Document