abca1 mrna
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
pp. 1-13
Author(s):  
Claire Rühlmann ◽  
David Dannehl ◽  
Marcus Brodtrück ◽  
Andrew C. Adams ◽  
Jan Stenzel ◽  
...  

Background: To date, there are no effective treatments for Alzheimer’s disease (AD). Thus, a significant need for research of therapies remains. Objective: One promising pharmacological target is the hormone fibroblast growth factor 21 (FGF21), which is thought to be neuroprotective. A clinical candidate for medical use could be the FGF21 analogue LY2405319 (LY), which has a specificity and potency comparable to FGF21. Methods: The present study investigated the potential neuroprotective effect of LY via PPARγ/apoE/abca1 pathway which is known to degrade amyloid-β (Aβ) plaques by using primary glial cells and hippocampal organotypic brain slice cultures (OBSCs) from 30- and 50-week-old transgenic APPswe/PS1dE9 (tg) mice. By LY treatment of 52-week-old tg mice with advanced Aβ deposition, we further aimed to elaborate the effect of LY on AD pathology in vivo. Results: LY application to primary glial cells caused an upregulation of pparγ, apoE, and abca1 mRNA expression and significantly decreased number and area of Aβ plaques in OBSCs. LY treatment in tg mice increased cerebral [18F] FDG uptake and N-acetylaspartate/creatine ratio indicating enhanced neuronal activity and integrity. Although LY did not reduce the number of Aβ plaques in tg mice, the number of iba1-positive cells was significantly decreased indicating reduced microgliosis. Conclusion: These data identified LY in vitro as an activator of Aβ degrading genes leading to cerebral Aβ load amelioration in early and late AD pathology. Although Aβ plaque reduction by LY failed in vivo, LY may be used as therapeutic agent to treat AD-related neuroinflammation and impaired neuronal integrity.


Author(s):  
Asahi Takeuchi ◽  
Kentaro Hisamatsu ◽  
Natsuki Okumura ◽  
Yuki Sugimitsu ◽  
Emiko Yanase ◽  
...  

IIAEK (Ile-Ile-Ala-Glu-Lys, lactostatin) is a novel pentapeptide from bovine milk β-lactoglobulin which lowers cholesterol levels. However, the molecular mechanisms underlying the suppression of intestinal cholesterol absorption by IIAEK are unknown. Therefore, we evaluated the effects of IIAEK on intestinal cholesterol metabolism in Caco-2 cells in a human intestinal model. We found that IIAEK significantly reduced the expression of intestinal cholesterol metabolism-associated genes, particularly that of the ATP-binding cassette transporter A1 (ABCA1) protein. Subsequently, we chemically synthesized a novel molecular probe, IIXEK, which can visualize a complex of target proteins interacting with photoaffinity-labeled IIAEK by fluorescent substances. Photoaffinity labeling and MS analysis with IIXEK for the rat small intestinal mucosa and intestinal lipid raft fractions of Caco-2 cells, we identified intestinal alkaline phosphatase (IAP) as a specific molecule interacting with IIAEK and discovered IIAEK common binding amino acid sequence, GFYLFVEGGR. Transfection of IAP siRNA counteracted the decrease in ABCA1 mRNA levels in Caco-2 cells. IIAEK significantly increased IAP mRNA and protein levels, and significantly decreased ABCA1 mRNA and protein levels in Caco-2 cells. In conclusion, we found that IIAEK targets IAP to improve cholesterol metabolism via a novel signaling pathway with a specific activation of IAP and down-regulation of intestinal ABCA1.


2018 ◽  
Vol 61 (4) ◽  
pp. 185-193 ◽  
Author(s):  
Seisuke Sato ◽  
Hitomi Imachi ◽  
Jingya Lyu ◽  
Yumi Miyai ◽  
Kensaku Fukunaga ◽  
...  

ATP-binding cassette transporter A1 (ABCA1), a 254-kD membrane protein, is a key regulator of lipid efflux from cells to apolipoproteins. ABCA1 in pancreatic β-cells influences insulin secretion and cholesterol homeostasis. Tumor necrosis factor (TNF)-α is a pleiotropic cytokine that elicits a wide spectrum of physiological events, including cell proliferation, differentiation and apoptosis and is also known to decrease glucose-dependent insulin secretion in pancreatic islets. In the present study, we examined the role of TNF-α on ABCA1 expression in rat pancreatic islets and INS-1 cells. ABCA1 protein levels decreased in response to rising concentrations of TNF-α in pancreatic islets. Real-time polymerase chain reaction analysis showed a significant decrease in ABCA1 mRNA expression. In parallel with its effect on endogenous ABCA1 mRNA levels, TNF-α suppressed the activity of a reporter construct containing the ABCA1 promoter. This effect was abrogated by BIRB796, but not by SB203580 or LY-294002. The constitutively active form of p38 mitogen-activated protein kinase (MAPK) γ suppressed ABCA1 promoter activity but not p38-MAPK (α, β), while a dominant-negative mutant of p38-MAPK γ blocked the effect of TNF-α on ABCA1 promoter activity. BIRB796 inhibited the increased cholesterol ester content induced by TNF-α. However, BIRB796 had no effect on either the decreased insulin content or the ABCA1 suppression caused by TNF-α in INS-1 cells. We checked the influence of TNF-α of insulin secretion and glucose-stimulated insulin secretion in rat pancreatic islet and INS-1 cell. TNF-α suppressed the insulin secretion and glucose-stimulated insulin secretion in both rat pancreatic islet and INS-1 cell. In summary, TNF-α suppressed the expression of endogenous ABCA1 and suppress the insulin secretion in pancreatic islets and INS-1 cells. These findings raise the possibility that TNF-α may affect insulin secretion by controlling ABCA1 expression.


2018 ◽  
Vol 114 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Simona D’Amore ◽  
Jennifer Härdfeldt ◽  
Marica Cariello ◽  
Giusi Graziano ◽  
Massimiliano Copetti ◽  
...  

Abstract Aims Metabolic syndrome (MS) is a cluster of cardio-metabolic risk factors associated with atherosclerosis and low-grade inflammation. Using unbiased expression screenings in peripheral blood mononuclear cells, we depict here a novel expression chart of 678 genes and 84 microRNAs (miRNAs) controlling inflammatory, immune and metabolic responses. In order to further elucidate the link between inflammation and the HDL cholesterol pathway in MS, we focussed on the regulation of the ATP-binding cassette transporter A1 (ABCA1), a key player in cholesterol efflux (CE). Methods and results ABCA1 mRNA levels are suppressed in CD14+ cells of MS patients and are negatively correlated to body mass index (BMI), insulin-resistance (HOMA-IR) and cardiovascular risk, and positively to HDL cholesterol and CE. miRNA target in silico prediction identified a putative modulatory role of ABCA1 for the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) target miR-9-5p, whose expression pattern was up-regulated in CD14+ cells of MS patients, positively correlated to BMI, HOMA-IR, and triglycerides, and negatively to ABCA1 mRNA levels, HDL cholesterol and CE. Ectopic gain and loss of miR-9-5p function in macrophages modulated ABCA1 mRNA and protein levels, ABCA1 miRNA 3’-untranslated region target sequence reporter assay, and CE into HDL, thus confirming ABCA1 as a target of miR-9-5p. Conclusions We identified the NF-κB target miR-9-5p as a negative regulator of ABCA1 adding a novel target pathway in the relationship between inflammation and HDL-driven reverse cholesterol transport for prevention or treatment of atherosclerosis in MS.


2013 ◽  
Vol 7 (6) ◽  
pp. 522-527 ◽  
Author(s):  
E. P. Demina ◽  
V. V. Miroshnikova ◽  
N. V. Majorov ◽  
V. V. Davydenko ◽  
A. L. Schwarzman

2011 ◽  
Vol 44 (13) ◽  
pp. S80
Author(s):  
Malekpour-Dehkordi Zahra ◽  
Javadi Ebrahim ◽  
Doosti Mahmood ◽  
Paknejad Maliheh ◽  
Nourbakhsh Mitra ◽  
...  

2010 ◽  
Vol 299 (2) ◽  
pp. R642-R654 ◽  
Author(s):  
Orlando Mani ◽  
Meike Körner ◽  
Martin T. Sorensen ◽  
Kristen Sejrsen ◽  
Carlos Wotzkow ◽  
...  

Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRα, PPARγ, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.


2006 ◽  
Vol 26 (12) ◽  
pp. 2724-2730 ◽  
Author(s):  
Sabine M. Post ◽  
Martine Groenendijk ◽  
Caroline C. van der Hoogt ◽  
Catherine Fievet ◽  
Gérald Luc ◽  
...  

2004 ◽  
Vol 36 (3) ◽  
pp. 218-226 ◽  
Author(s):  
Chao-Ke Tang ◽  
Guo-Hua Tang ◽  
Guang-Hui Yi ◽  
Zuo Wang ◽  
Lu-Shan Liu ◽  
...  

Abstract Cholesterol-loaded macrophage foam cells are a central component of atherosclerotic lesions. ATP binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, mediates the efflux of phospholipid and cholesterol from cells to apolipoprotein A-I (apoA-I), reversing foam cell formation. This study investigated the effect of apoA-I on ABCA1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells. After exposure of the cultured THP-1 macrophage-derived foam cells to apoA-I for different time, cholesterol efflux, ABCA1 mRNA and protein levels were determined by FJ-2107P type liquid scintillator, RT-PCR and Western blot, respectively. The mean ABCA1 fluorescence intensity on THP-1 macrophage-derived foam cells was detected by flow cytometry. Results showed that apoA-I markedly increased ABCA1-mediated cholesterol efflux from THP-1 macrophage-derived foam cells. This was accompanied by an increase in the content of ABCA1. ApoA-I did not alter ABCA1 mRNA abundance. Significantly, thiol protease inhibitors increased the level of ABCA1 protein and slowed its decay in THP-1 macrophage-derived foam cells, whereas none of the proteosome-specific inhibitor lactacystin, other protease inhibitors, or the lysosomal inhibitor NH4Cl showed such effects. The apoA-I-mediated cellular cholesterol efflux was enhanced by thiol protease inhibitors. Our results suggested that thiol protease inhibitors might provide an alternative way to upregulate ABCA1 protein. This strategy is especially appealing since it may mimic the stabilizing effect of the natural ligands apoA-I.


Sign in / Sign up

Export Citation Format

Share Document