scholarly journals Comparison of Plaque Size, Thermal Stability, and Replication Rate among SARS-CoV-2 Variants of Concern

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Gi Uk Jeong ◽  
Gun Young Yoon ◽  
Hyun Woo Moon ◽  
Wooseong Lee ◽  
Insu Hwang ◽  
...  

SARS-CoV-2, like other RNA viruses, has a propensity for genetic evolution owing to the low fidelity of its viral polymerase. Several recent reports have described a series of novel SARS-CoV-2 variants. Some of these have been identified as variants of concern (VOCs), including alpha (B.1.1.7, Clade GRY), beta (B.1.351, Clade GH), gamma (P.1, Clade GR), and delta (B.1.617.2, Clade G). VOCs are likely to have some effect on transmissibility, antibody evasion, and changes in therapeutic or vaccine effectiveness. However, the physiological and virological understanding of these variants remains poor. We demonstrated that these four VOCs exhibited differences in plaque size, thermal stability at physiological temperature, and replication rates. The mean plaque size of beta was the largest, followed by those of gamma, delta, and alpha. Thermal stability, evaluated by measuring infectivity and half-life after prolonged incubation at physiological temperature, was correlated with plaque size in all variants except alpha. However, despite its relatively high thermal stability, alpha’s small plaque size resulted in lower replication rates and fewer progeny viruses. Our findings may inform further virological studies of SARS-CoV-2 variant characteristics, VOCs, and variants of interest. These studies are important for the effective management of the COVID-19 pandemic.

2021 ◽  
Author(s):  
Gi Uk Jeong ◽  
Gun Young Yoon ◽  
Hyun Woo Moon ◽  
Wooseong Lee ◽  
Insu Hwang ◽  
...  

SARS-CoV-2, like other RNA viruses, has a propensity for genetic evolution owing to the low fidelity of its viral polymerase. This evolution results in the emergence of novel variants with different characteristics than their ancestral strain. Several recent reports have described a series of novel SARS-CoV-2 variants. Some of these have been identified as variants of concern (VOCs), including alpha (B.1.1.7, Clade GRY), beta (B.1.351, Clade GH), gamma (P.1, Clade GR), and delta (B.1.617.2, Clade G). VOCs are likely to have some effect on transmissibility, antibody evasion, and changes in therapeutic or vaccine effectiveness. However, the physiological and virological understanding of these variants remains poor. We demonstrated that these four VOCs exhibited differences in plaque size, thermal stability at physiological temperature, and replication rates. The mean plaque size of beta was the largest, followed by those of gamma, delta, and alpha. Thermal stability, evaluated by measuring infectivity and half-life after prolonged incubation at physiological temperature, was correlated with plaque size in all variants except alpha. However, despite its relatively high thermal stability, alpha's small plaque size resulted in lower replication rates and fewer progeny viruses. Our findings may inform further virological studies of SARS-CoV-2 variant characteristics, VOCs, and variants of interest. These studies are important for the effective management of the COVID-19 pandemic.


Author(s):  
Sheng-Chieh Lin ◽  
Yu-Chieh Cheng ◽  
Man-Kit Leung ◽  
Jiun-Haw Lee ◽  
Tien-Lung Chiu

2011 ◽  
Vol 11 (5) ◽  
pp. 4639-4643 ◽  
Author(s):  
Chang-Hun Seok ◽  
Young-Il Park ◽  
Soo-Kang Kim ◽  
Ji-Hoon Lee ◽  
Jongwook Park

2019 ◽  
Vol 17 (1) ◽  
pp. 1080-1086
Author(s):  
Elżbieta Chmiel-Szukiewicz

AbstractSyntheses of oligoetherols with a 1,3-pyrimidine ring and boron atoms using 6-aminouracil, ethylene carbonate and boric acid has been proposed. The structure of the obtained products were determined by instrumental methods (IR, 1H-NMR and MALDI-ToF spectra). The physicochemical and thermal properties of oligoetherols were examined. The products were characterized by high thermal stability. Based on the tests performed, it was found that oligoetherols obtained from 6-aminouracil, boric acid and ethylene carbonate are suitable for the manufacturing of polyurethane foams with improved thermal stability and reduced flammability.


2021 ◽  
pp. 118234
Author(s):  
Yunlong Yang ◽  
Linyan Fu ◽  
Xuefei Ren ◽  
Yingjie Zhu ◽  
Jiajie Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document