scholarly journals Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Johnny Chun-Chau Sung ◽  
Ying Liu ◽  
Kam-Chau Wu ◽  
Man-Chung Choi ◽  
Chloe Ho-Yi Ma ◽  
...  

Various types of vaccines, such as mRNA, adenovirus, and inactivated virus by injection, have been developed to prevent SARS-CoV-2 infection. Although some of them have already been approved under the COVID-19 pandemic, various drawbacks, including severe side effects and the requirement for sub-zero temperature storage, may hinder their applications. Bacillus subtilis (B. subtilis) is generally recognized as a safe and endotoxin-free Gram-positive bacterium that has been extensively employed as a host for the expression of recombinant proteins. Its dormant spores are extraordinarily resistant to the harsh environment in the gastrointestinal tract. This feature makes it an ideal carrier for oral administration in resisting this acidic environment and for release in the intestine. In this study, an engineered B. subtilis spore expressing the SARS-CoV-2 spike protein receptor binding domain (sRBD) on the spore surface was developed. In a pilot test, no adverse health event was observed in either mice or healthy human volunteers after three oral courses of B. subtilis spores. Significant increases in neutralizing antibody against sRBD, in both mice and human volunteers, after oral administration were also found. These findings may enable the further clinical developments of B. subtilis spores as an oral vaccine candidate against COVID-19 in the future.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 635
Author(s):  
Ju Kim ◽  
Ye Lin Yang ◽  
Yongsu Jeong ◽  
Yong-Suk Jang

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory symptoms. Due to the lack of medical countermeasures, effective and safe vaccines against MERS-CoV infection are urgently required. Although different types of candidate vaccines have been developed, their immunogenicity is limited, and the dose and administration route need optimization to achieve optimal protection. We here investigated the potential use of human β-defensin 2 (HBD 2) as an adjuvant to enhance the protection provided by MERS-CoV vaccination. We found that immunization of human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice with spike protein receptor-binding domain (S RBD) conjugated with HBD 2 (S RBD-HBD 2) induced potent antigen (Ag)-specific adaptive immune responses and protected against MERS-CoV infection. In addition, immunization with S RBD-HBD 2 alleviated progressive pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-Tg mice and suppressed endoplasmic reticulum stress signaling activation upon viral infection. Compared to intramuscular administration, intranasal administration of S RBD-HBD 2 induced more potent mucosal IgA responses and was more effective for protecting against intranasal MERS-CoV infection. In conclusion, our findings suggest that HBD 2 potentiates Ag-specific immune responses against viral Ag and can be used as an adjuvant enhancing the immunogenicity of subunit vaccine candidates against MERS-CoV.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Cong Wang ◽  
Chen Hua ◽  
Shuai Xia ◽  
Weihua Li ◽  
Lu Lu ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) has continuously posed a threat to public health worldwide, yet no therapeutics or vaccines are currently available to prevent or treat MERS-CoV infection. We previously identified a fusion inhibitory peptide (HR2P-M2) targeting the MERS-CoV S2 protein HR1 domain and a highly potent neutralizing monoclonal antibody (m336) specific to the S1 spike protein receptor-binding domain (RBD). However, m336 was found to have reduced efficacy against MERS-CoV strains with mutations in RBD, and HR2P-M2 showed low potency, thus limiting the clinical application of each when administered separately. However, we herein report that the combination of m336 and HR2P-M2 exhibited potent synergism in inhibiting MERS-CoV S protein-mediated cell–cell fusion and infection by MERS-CoV pseudoviruses with or without mutations in the RBD, resulting in the enhancement of antiviral activity in contrast to either one administered alone. Thus, this combinatorial strategy could be used in clinics for the urgent treatment of MERS-CoV-infected patients.


Author(s):  
Christopher A. Beaudoin ◽  
Samir W. Hamaia ◽  
Christopher L.-H. Huang ◽  
Tom L. Blundell ◽  
Antony P. Jackson

The RGD motif in the Severe Acute Syndrome Coronavirus 2 (SARS-CoV-2) spike protein has been predicted to bind RGD-recognizing integrins. Recent studies have shown that the spike protein does, indeed, interact with αVβ3 and α5β1 integrins, both of which bind to RGD-containing ligands. However, computational studies have suggested that binding between the spike RGD motif and integrins is not favourable, even when unfolding occurs after conformational changes induced by binding to the canonical host entry receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, non-RGD-binding integrins, such as αx, have been suggested to interact with the SARS-CoV-2 spike protein. Other viral pathogens, such as rotaviruses, have been recorded to bind integrins in an RGD-independent manner to initiate host cell entry. Thus, in order to consider the potential for the SARS-CoV-2 spike protein to bind integrins independent of the RGD sequence, we investigate several factors related to the involvement of integrins in SARS-CoV-2 infection. First, we review changes in integrin expression during SARS-CoV-2 infection to identify which integrins might be of interest. Then, all known non-RGD integrin-binding motifs are collected and mapped to the spike protein receptor-binding domain and analyzed for their 3D availability. Several integrin-binding motifs are shown to exhibit high sequence similarity with solvent accessible regions of the spike receptor-binding domain. Comparisons of these motifs with other betacoronavirus spike proteins, such as SARS-CoV and RaTG13, reveal that some have recently evolved while others are more conserved throughout phylogenetically similar betacoronaviruses. Interestingly, all of the potential integrin-binding motifs, including the RGD sequence, are conserved in one of the known pangolin coronavirus strains. Of note, the most recently recorded mutations in the spike protein receptor-binding domain were found outside of the putative integrin-binding sequences, although several mutations formed inside and close to one motif, in particular, may potentially enhance binding. These data suggest that the SARS-CoV-2 spike protein may interact with integrins independent of the RGD sequence and may help further explain how SARS-CoV-2 and other viruses can evolve to bind to integrins.


2021 ◽  
Author(s):  
Janani Prahlad ◽  
Lucas R. Struble ◽  
William E. Lutz ◽  
Savanna A. Wallin ◽  
Surender Khurana ◽  
...  

AbstractThe COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of the SARS-CoV-2 spike protein receptor binding domain using the CyDisCo system to create and maintain the correct disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce functional, active antigen in bacteria capable of recognizing and binding to the ACE2 (angiotensin-converting enzyme) receptor as well as antibodies in COVID-19 patient sera.


2020 ◽  
Author(s):  
Tiong Kit Tan ◽  
Pramila Rijal ◽  
Rolle Rahikainen ◽  
Anthony H. Keeble ◽  
Lisa Schimanski ◽  
...  

ABSTRACTThere is dire need for an effective and affordable vaccine against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a modular virus-like particle vaccine candidate displaying the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) using SpyTag/SpyCatcher technology (RBD-SpyVLP). Low doses of RBD-SpyVLP in a prime-boost regimen induced a strong neutralising antibody response in mice and pigs that was superior to convalescent human sera. We evaluated antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we showed that RBD-SpyVLP induced a polyclonal antibody response that recognised all key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. The induction of potent and polyclonal antibody responses by RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic. Moreover, RBD-SpyVLP is highly resilient, thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence.


2020 ◽  
Author(s):  
Dominic Narang ◽  
Matthew Balmer ◽  
D. Andrew James ◽  
Derek Wilson

This study provides an HDX-MS based analysis of the interaction between the SARS-CoV-2 spike protein and the human Angiotensin Converting Enzyme 2. <div><br></div><div>- The data agree exactly with the X-ray co-crystal structure of this complex, but provide additional information based on shifts in dynamics that are observed just outside the interface. </div><div><br></div><div>- These dynamic changes occur specifically in regions that are the primary targets of neutralizing antibodies that target spike protein, suggesting that the neutralization mechanism may result from suppression of dynamic shifts in the spike Receptor Binding Domain (RBD) that are necessary for favorable binding thermodynamics in the spike / ACE2 interaction.</div>


Sign in / Sign up

Export Citation Format

Share Document