scholarly journals Protection against the New Equine Influenza Virus Florida Clade I Outbreak Strain Provided by a Whole Inactivated Virus Vaccine

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 784
Author(s):  
Sylvia Reemers ◽  
Sander van Bommel ◽  
Qi Cao ◽  
David Sutton ◽  
Saskia van de Zande

Equine influenza virus (EIV) is a major cause of respiratory disease in horses. Vaccination is an effective tool for infection control. Although various EIV vaccines are widely available, major outbreaks occurred in Europe in 2018 involving a new EIV H3N8 FC1 strain. In France, it was reported that both unvaccinated and vaccinated horses were affected despite >80% vaccination coverage and most horses being vaccinated with a vaccine expressing FC1 antigen. This study assessed whether vaccine type, next to antigenic difference between vaccine and field strain, plays a role. Horses were vaccinated with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza) and experimentally infected with the new FC1 outbreak strain. Serology (HI), clinical signs, and virus shedding were evaluated in vaccinated compared to unvaccinated horses. Results showed a significant reduction in clinical signs and a lack of virus shedding in vaccinated horses compared to unvaccinated controls. From these results, it can be concluded that Equilis Prequenza provides a high level of protection to challenge with the new FC1 outbreak strain. This suggests that, apart from antigenic differences between vaccine and field strain, other aspects of the vaccine may also play an important role in determining field efficacy.

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 501 ◽  
Author(s):  
Sylvia Reemers ◽  
Denny Sonnemans ◽  
Linda Horspool ◽  
Sander van Bommel ◽  
Qi Cao ◽  
...  

Vaccination is an effective tool to limit equine influenza virus (EIV H3N8) infection, a contagious respiratory disease with potentially huge economic impact. The study assessed the effects of antigenic change on vaccine efficacy and the need for strain update. Horses were vaccinated (V1 and V2) with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza, group 2, FC1 and European strains) or a carbomer-adjuvanted, modified vector vaccine (ProteqFlu, group 3, FC1 and FC2 HA genes). Serology (SRH, HI, VN), clinical signs and viral shedding were assessed in comparison to unvaccinated control horses. The hypothesis was that group 2 (no FC2 vaccine strain) would be less well protected than group 3 following experimental infection with a recent FC2 field strain (A/equi-2/Wexford/14) 4.5 months after vaccination. All vaccinated horses had antibody titres to FC1 and FC2. After challenge, serology increased more markedly in group 3 than in group 2. Vaccinated horses had significantly lower total clinical scores and viral shedding. Unexpectedly, viral RNA shedding was significantly lower in group 2 than in group 3. Vaccination induced protective antibody titres to FC1 and FC2 and reduced clinical signs and viral shedding. The two tested vaccines provided equivalent protection against a recent FC2 EIV field strain.


2014 ◽  
Vol 92 (11) ◽  
pp. 450-457 ◽  
Author(s):  
K Tabynov ◽  
Z Kydyrbayev ◽  
S Ryskeldinova ◽  
N Assanzhanova ◽  
Y Kozhamkulov ◽  
...  

2021 ◽  
Vol 272 ◽  
pp. 105674
Author(s):  
Manabu Nemoto ◽  
Minoru Ohta ◽  
Takashi Yamanaka ◽  
Yoshinori Kambayashi ◽  
Hiroshi Bannai ◽  
...  

2006 ◽  
Vol 114 (1-2) ◽  
pp. 103-110 ◽  
Author(s):  
A.M. Lopez ◽  
R. Hecker ◽  
G. Mutwiri ◽  
S. van Drunen Littel-van den Hurk ◽  
L.A. Babiuk ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 933
Author(s):  
Pilar Blanco-Lobo ◽  
Laura Rodriguez ◽  
Stephanie Reedy ◽  
Fatai S. Oladunni ◽  
Aitor Nogales ◽  
...  

Vaccination remains the most effective approach for preventing and controlling equine influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic and antigenic differences between currently available vaccines and circulating strains, resulting in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health (OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of EIV in vaccines may maximize the protection against presently circulating viral strains. In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.


2010 ◽  
Vol 84 (8) ◽  
pp. 3974-3983 ◽  
Author(s):  
Roberto A. Saenz ◽  
Michelle Quinlivan ◽  
Debra Elton ◽  
Shona MacRae ◽  
Anthony S. Blunden ◽  
...  

ABSTRACT A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon (“cytokine storms”), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.


Sign in / Sign up

Export Citation Format

Share Document