scholarly journals Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-Like Particles

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Yong Zhi ◽  
Hyun Jung Ji ◽  
Huichen Guo ◽  
Jae Hyang Lim ◽  
Eui-Baek Byun ◽  
...  

Foot-and-mouth disease virus (FMDV) causes a highly contagious and devastating disease in livestock animals and has a great potential to cause severe economic loss worldwide. The major antigen of FMDV capsid protein, VP1, contains the major B-cell epitope responsible for effectively eliciting protective humoral immunity. In this study, irradiated Salmonella Typhimurium (KST0666) were used as transgenic vectors containing stress-inducible plasmid pRECN-VP1 to deliver the VP1 protein from FMDV-type A/WH/CHA/09. Mice were orally inoculated with ATOMASal-L3 harboring pRECN-VP1, and FMDV virus-like particles, where (VLPFMDV)-specific humoral, mucosal, and cellular immune responses were evaluated. Mice vaccinated with attenuated Salmonella (KST0666) expressing VP1 (named KST0669) showed high levels of VLP-specific IgA in feces and IgG in serum, with high FMDV neutralization titer. Moreover, KST0669-vaccinated mice showed increased population of IFN-γ (type 1 T helper cells; Th1 cells)-, IL-5 (Th2 cells)-, and IL-17A (Th17 cells)-expressing CD4+ as well as activated CD8+ T cells (IFN-γ+CD8+ cells), detected by stimulating VLPFMDV. All data indicate that our Salmonella vector system successfully delivered FMDV VP1 to immune cells and that the humoral and cellular efficacy of the vaccine can be easily evaluated using VLPFMDV in a Biosafety Level I (BSL1) laboratory.

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 470
Author(s):  
Giselle Rangel ◽  
Juan Bárcena ◽  
Noelia Moreno ◽  
Carlos P. Mata ◽  
José R. Castón ◽  
...  

Currently there is a clear trend towards the establishment of virus-like particles (VLPs) as a powerful tool for vaccine development. VLPs are tunable nanoparticles that can be engineered to be used as platforms for multimeric display of foreign antigens. We have previously reported that VLPs derived from rabbit hemorrhagic disease virus (RHDV) constitute an excellent vaccine vector, capable of inducing specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes. Here, we evaluate the ability of chimeric RHDV VLPs to elicit immune response and protection against Foot-and-Mouth disease virus (FMDV), one of the most devastating livestock diseases. For this purpose, we generated a set of chimeric VLPs containing two FMDV-derived epitopes: a neutralizing B-cell epitope (VP1 (140–158)) and a T-cell epitope [3A (21–35)]. The epitopes were inserted joined or individually at two different locations within the RHDV capsid protein. The immunogenicity and protection potential of the chimeric VLPs were analyzed in the mouse and pig models. Herein we show that the RHDV engineered VLPs displaying FMDV-derived epitopes elicit a robust neutralizing immune response in mice and pigs, affording partial clinical protection against an FMDV challenge in pigs.


2015 ◽  
Vol 59 (01) ◽  
pp. 84-91 ◽  
Author(s):  
S. H. BASAGOUDANAVAR ◽  
M. HOSAMANI ◽  
R. P. TAMIL ◽  
B. P. SREENIVASA ◽  
B. K. CHANDRASEKHAR ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4823 ◽  
Author(s):  
Guoqiang Wang ◽  
Yunchao Liu ◽  
Hua Feng ◽  
Yumei Chen ◽  
Suzhen Yang ◽  
...  

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles (CNPs) vaccine that displays the predominant epitope of the serotype O foot-and-mouth disease virus (FMDV) VP1 131-160 on the surface of MS2 phage. The recombinant protein was expressed inEscherichia Coliand can self-assemble into CNPs with diameter at 25–30 nmin vitro. A tandem repeat peptide epitopes (TRE) was prepared as control. Mice were immunized with CNPs, TRE and commercialized synthetic peptide vaccines (PepVac), respectively. The ELISA results showed that CNPs stimulated a little higher specific antibody levels to PepVac, but was significantly higher than the TRE groups. Moreover, the results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNP immunized mice exhibited significantly enhanced cellular immune response compared to TRE. These results suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.


Sign in / Sign up

Export Citation Format

Share Document