scholarly journals Comparison of the Development of SARS-Coronavirus-2-Specific Cellular Immunity, and Central Memory CD4+ T-Cell Responses Following Infection versus Vaccination

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Kevin M. Dennehy ◽  
Eva Löll ◽  
Christine Dhillon ◽  
Johanna-Maria Classen ◽  
Tobias D. Warm ◽  
...  

Memory T-cell responses following infection with coronaviruses are reportedly long-lived and provide long-term protection against severe disease. Whether vaccination induces similar long-lived responses is not yet clear since, to date, there are limited data comparing memory CD4+ T-cell responses induced after SARS-CoV-2 infection versus following vaccination with BioNTech/Pfizer BNT162b2. We compared T-cell immune responses over time after infection or vaccination using ELISpot, and memory CD4+ T-cell responses three months after infection/vaccination using activation-induced marker flow cytometric assays. Levels of cytokine-producing T-cells were remarkably stable between three and twelve months after infection, and were comparable to IFNγ+ and IFNγ+IL-2+ T-cell responses but lower than IL-2+ T-cell responses at three months after vaccination. Consistent with this finding, vaccination and infection elicited comparable levels of SARS-CoV-2 specific CD4+ T-cells after three months in addition to comparable proportions of specific central memory CD4+ T-cells. By contrast, the proportions of specific effector memory CD4+ T-cells were significantly lower, whereas specific effector CD4+ T-cells were higher after infection than after vaccination. Our results suggest that T-cell responses—as measured by cytokine expression—and the frequencies of SARS-CoV-2-specific central memory CD4+T-cells—indicative of the formation of the long-lived memory T-cell compartment—are comparably induced after infection and vaccination.

2004 ◽  
Vol 173 (1) ◽  
pp. 673-681 ◽  
Author(s):  
Insoo Kang ◽  
Myung Sun Hong ◽  
Helena Nolasco ◽  
Sung Hwan Park ◽  
Jin Myung Dan ◽  
...  

2003 ◽  
Vol 198 (12) ◽  
pp. 1909-1922 ◽  
Author(s):  
Souheil-Antoine Younes ◽  
Bader Yassine-Diab ◽  
Alain R. Dumont ◽  
Mohamed-Rachid Boulassel ◽  
Zvi Grossman ◽  
...  

CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.


2003 ◽  
Vol 197 (3) ◽  
pp. 375-385 ◽  
Author(s):  
Hiroeki Sahara ◽  
Nilabh Shastri

CD4 T cells regulate immune responses that cause chronic graft rejection and graft versus host disease but their target antigens remain virtually unknown. We developed a new method to identify CD4 T cell–stimulating antigens. LacZ-inducible CD4 T cells were used as a probe to detect their cognate peptide/MHC II ligand generated in dendritic cells fed with Escherichia coli expressing a library of target cell genes. The murine H46 locus on chromosome 7 was thus found to encode the interleukin 4–induced IL4i1 gene. The IL4i1 precursor contains the HAFVEAIPELQGHV peptide which is presented by Ab major histocompatibility complex class II molecule via an endogenous pathway in professional antigen presenting cells. Both allelic peptides bind Ab and a single alanine to methionine substitution at p2 defines nonself. These results reveal novel features of H loci that regulate CD4 T cell responses as well as provide a general strategy for identifying elusive antigens that elicit CD4 T cell responses to tumors or self-tissues in autoimmunity.


Blood ◽  
2016 ◽  
Vol 127 (12) ◽  
pp. 1606-1609 ◽  
Author(s):  
Fabian C. Verbij ◽  
Annelies W. Turksma ◽  
Femke de Heij ◽  
Paul Kaijen ◽  
Neubury Lardy ◽  
...  

Key Points CD4+ T-cell responses in 2 patients with acquired TTP. CUB2 domain-derived core peptides are recognized by CD4+ T cells present in 2 patients with acquired TTP.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2413-2413 ◽  
Author(s):  
Ahmad Faisal Karim ◽  
Pooja Vir ◽  
Devi Gunasekera ◽  
Allen I. Stering ◽  
Kenneth Lieuw ◽  
...  

The existence of natural antibodies recognizing endogenous factor VIII (FVIII) and of FVIII-specific CD4+ T-cell responses in some healthy, non-hemophilic blood donors has been appreciated for >20 years. The Conti-Fine group measured CD4+ T-cell proliferation following in vitro stimulation with FVIII protein or synthetic FVIII peptides. More recently, FVIII-specific CD4+ T-cell lines were expanded from PBMCs isolated from large blood volumes donated by healthy individuals, and estimates of specific precursor frequency (~2/million CD4+ T cells) were calculated on the basis of interferon (IFN)-gamma ELISPOT assays of FVIII-stimulated cells (Meuniere et al., Blood Advances 1(21): 1842-7). Escape of these self-reactive precursor cells from thymic editing via deletion or anergy and their subsequent persistence in the periphery may contribute to the rare but potentially severe autoimmune reactions to FVIII ("acquired hemophilia A") and to the unusual immunogenicity of therapeutic FVIII administered i.v. to hemophilia A patients. The present study sought to further characterize CD4+ T-cell responses to endogenous FVIII and to map epitopes recognized by these self-reactive cells. We were particularly interested to learn if these cells recognize multiple epitopes in FVIII or if they respond to only several immunodominant epitopes. Accordingly, IFN-gamma ELISPOT assays were carried out by stimulating CD4+ T cells with 15-mer FVIII peptides having 12-residue overlaps and spanning the FVIII A1, A2, A3, C1 and C2 domains. For efficient mapping, initial assays utilized large pools of peptides, and positive responses were then "decoded" by ELISPOTs using smaller peptide pools or individual peptides. Blood samples were obtained from healthy controls under approved IRB protocols. The ELISPOT assays utilized CD4+ T cells isolated by negative selection, with irradiated autologous PBMCs as antigen presenting cells. Anti-CD49d/CD28 monoclonal antibodies were added for co-stimulation to increase the sensitivity of the assay and cells were cultured with IL-7 to improve cell viability. As a result, this assay required smaller blood volumes, but it should be noted that lower-avidity T-cell responses were likely detected that might be missed in ELISPOT assays without these modifications. Relevance of such low-avidity self-reactive cells is provided by the clinical observation, consistent with basic immunological principles, that risk factors for autoimmune responses to FVIII include old age (pro-inflammatory), trauma, surgery and postpartum status, all of which up-regulate T-cell co-stimulatory factors. The first subject had HLA-DRB1*01:01 and HLA-DRB1*08:04 alleles. Stimulation with large peptide pools and rFVIII protein indicated recognition of epitopes in at least 3 FVIII domains. Additional ELISPOTs tested the immunogenicity of 15 peptides corresponding to FVIII peptides previously demonstrated to be presented on dendritic cells from 2 individuals with an HLA-DRB1*01:01 allele (van Haren et al., Mol Cell Proteomics. 2011;10(6)), ensuring that our assays included tests of naturally processed FVIII peptides. Two of these peptides, both from the FVIII A1 domain, produced ELISPOT readings above background levels. T cells were then stimulated with these peptides for 19 days, stained with peptide-loaded MHC Class II (HLA-DRB1*01:01) tetramers, sorted and expanded for another 14 days. Tetramer staining then confirmed isolation of CD4+ T-cell clones recognizing one of these peptides. T cells that recognize their cognate antigen with high avidity are significant drivers of allo- and autoimmune responses. Lower-avidity T cells, however, can play significant roles in pro-inflammatory settings. Tetramer staining validated our ELISPOT-based identification of specific epitopes in FVIII. We are now carrying out ELISPOT assays using pooled peptides followed by individual FVIII peptides as stimulants, to estimate the repertoire of FVIII-specific CD4+ T cells in healthy non-hemophilic individuals. Mapping of HLA-restricted T-cell epitopes will also enable future tetramer-based isolation and phenotypic characterization of these rare T cells without expanding them in culture. This will allow us to investigate the interesting question of what peripheral tolerance mechanisms prevent expansion of these self-reactive cells in vivo, except in rare cases of FVIII autoimmunity. . Disclosures Pratt: Bloodworks NW: Patents & Royalties: inventor on patents related to FVIII immunogenicity; Grifols, Inc: Research Funding.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Junghwa Lee ◽  
Masao Hashimoto ◽  
Se Jin Im ◽  
Koichi Araki ◽  
Hyun-Tak Jin ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) is one of the most widely used viral vectors and is known to generate potent T cell responses. While many previous studies have characterized Ad5-induced CD8 T cell responses, there is a relative lack of detailed studies that have analyzed CD4 T cells elicited by Ad5 vaccination. Here, we immunized mice with Ad5 vectors encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) and examined GP-specific CD4 T cell responses elicited by Ad5 vectors and compared them to those induced by an acute LCMV infection. In contrast to LCMV infection, where balanced CD4 T helper 1 (Th1) and T follicular helper (Tfh) responses were induced, Ad5 immunization resulted in a significantly reduced frequency of Th1 cells. CD4 T cells elicited by Ad5 vectors expressed decreased levels of Th1 markers, such as Tim3, SLAM, T-bet, and Ly6C, had smaller amounts of cytotoxic molecules like granzyme B, and produced less interferon gamma than CD4 T cells induced by LCMV infection. This defective CD4 Th1 response appeared to be intrinsic for Ad5 vectors and not a reflection of comparing a nonreplicating vector to a live viral infection, since immunization with a DNA vector expressing LCMV-GP generated efficient CD4 Th1 responses. Analysis at early time points (day 3 or 4) after immunization with Ad5 vectors revealed a defect in the expression of CD25 (interleukin-2 [IL-2] receptor alpha chain) on Ad5-elicited CD4 T cells, and administration of exogenous IL-2 following Ad5 immunization partially restored CD4 Th1 responses. These results suggest that impairment of Th1 commitment after Ad5 immunization could be due to reduced IL-2-mediated signaling. IMPORTANCE During viral infection, generating balanced responses of Th1 and Tfh cells is important to induce effective cell-mediated responses and provide optimal help for antibody responses. In this study, to investigate vaccine-induced CD4 T cell responses, we characterized CD4 T cells after immunization with Ad5 vectors expressing LCMV-GP in mice. Ad5 vectors led to altered effector differentiation of LCMV GP-specific CD4 T cells compared to that during LCMV infection. CD4 T cells following Ad5 immunization exhibited impaired Th1 lineage commitment, generating significantly decreased Th1 responses than those induced by LCMV infection. Our results suggest that suboptimal IL-2 signaling possibly plays a role in reduced Th1 development following Ad5 immunization.


2012 ◽  
Vol 209 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Julian Schulze zur Wiesch ◽  
Donatella Ciuffreda ◽  
Lia Lewis-Ximenez ◽  
Victoria Kasprowicz ◽  
Brian E. Nolan ◽  
...  

Vigorous proliferative CD4+ T cell responses are the hallmark of spontaneous clearance of acute hepatitis C virus (HCV) infection, whereas comparable responses are absent in chronically evolving infection. Here, we comprehensively characterized the breadth, specificity, and quality of the HCV-specific CD4+ T cell response in 31 patients with acute HCV infection and varying clinical outcomes. We analyzed in vitro T cell expansion in the presence of interleukin-2, and ex vivo staining with HCV peptide-loaded MHC class II tetramers. Surprisingly, broadly directed HCV-specific CD4+ T cell responses were universally detectable at early stages of infection, regardless of the clinical outcome. However, persistent viremia was associated with early proliferative defects of the HCV-specific CD4+ T cells, followed by rapid deletion of the HCV-specific response. Only early initiation of antiviral therapy was able to preserve CD4+ T cell responses in acute, chronically evolving infection. Our results challenge the paradigm that HCV persistence is the result of a failure to prime HCV-specific CD4+ T cells. Instead, broadly directed HCV-specific CD4+ T cell responses are usually generated, but rapid exhaustion and deletion of these cells occurs in the majority of patients. The data further suggest a short window of opportunity to prevent the loss of CD4+ T cell responses through antiviral therapy.


2020 ◽  
Vol 4 (11) ◽  
pp. 701-712
Author(s):  
Nathália V. Batista ◽  
Yu-Han Chang ◽  
Kuan-Lun Chu ◽  
Kuan Chung Wang ◽  
Mélanie Girard ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4351-4351
Author(s):  
Shigeo Fuji ◽  
Julia Fischer ◽  
Markus Kapp ◽  
Thomas G Bumm ◽  
Hermann Einsele ◽  
...  

Abstract Abstract 4351 Wilms‘ tumor protein-1 (WT1) is one of the most investigated tumor-associated antigens (TAA) in hematological malignancies. CD8 T-cell responses against several WT1-derived peptides have been characterized and are known to contribute to disease control after allogeneic hematopoietic stem cell transplantation (HSCT). Also the identification of human leukocyte antigen (HLA) class II-restricted CD4 T-cell epitopes from WT1 is a challenging task of T-cell-based cancer immunotherapy to improve the effectiveness of WT1 peptide vaccination. We found a highly immunogenic WT1 peptide composed of only 9 amino acids having the ability to induce IFN-γ secretion in CD4 T-cells in an HLA DR-restricted manner. This finding is of great interest as it was generally accepted that HLA class II binding peptides are composed of at least 12 amino acids being recognized by CD4 T-cells, whereas HLA class I binding peptides are composed of 8–11 amino acids being recognized by CD8 T-cells (Wang et al Mol. Immunol. 2002). However, both HLA class I and class II molecules bind to primary and secondary peptide anchor motifs covering the central 9–10 amino acids. Thus, considering this common structural basis for peptide binding there is a possibility that the WT1 9-mer peptide binds to HLA class II molecules, and induces CD4 T-cell responses. IFN-γ induction in response to several WT1 9-mer peptides was screened in 24 HLA-A*02:01 positive patients with acute myeloid leukemia or myelodysplastic syndrome after allogeneic HSCT. Responses to one WT1 9-mer peptide were exclusively detected in CD3+CD4+ T-cells of 2 patients after allogeneic HSCT, but not in CD3+CD4+ T-cells of their corresponding HSC donors. CD4+ T-cell responses to this WT1 9-mer peptide exhibited high levels of functional avidity, as IFN-γ induction was detected after stimulation with 100 ng peptide per mL. Peptide-induced IFN-γ production was confirmed with IFN-γ ELISPOT assays and the HLA restriction of the T-cell response was determined by HLA blocking antibodies. The reaction was significantly blocked by anti-pan HLA class II antibody (85 % reduction), but neither by pan-HLA class I nor by anti-HLA A2 antibody. To identify the subtype of HLA class II molecule, blocking assays with antibodies against HLA-DP, HLA-DR and HLA-DQ were performed. IFN-γ induction was completely abrogated by anti-HLA-DR antibody (99 % reduction) (fig 1, p value of unpaired student‘s t-test <0.0001 for the medium control vs anti-pan HLA class II antibody or anti-HLA-DR antibody, respectively). To test whether IFN-γ was exclusively induced in CD4 T cells, CD4 or CD8 T-cells were depleted from PBMC. Whereas CD8 T-cell depletion did not affect IFN-γ induction, CD4 T-cell depletion completely abrogated the WT1 9-mer peptide induced response (fig 2). CD4 T-cells responding to the WT1 9-mer peptide were indicated to be functional cytotoxic T-cells with an effector CD4 T-cell phenotype. Longitudinal analyses demonstrated the persistence and functionality of WT1 9-mer specific CD4 T-cells in PBMC of patients even at day 1368 after allogeneic HSCT. These data indicate for the first time that a TAA-derived 9-mer peptide can induce HLA class II-restricted CD4 T-cell responses. Vaccination with the characterized WT1 9-mer peptide can enhance the induction and maintenance of not only CD4 but also indirect CD8 T-cell responses. Considering that CD4 T-cells play an important role in tumor rejection, the possibility that other TAA-derived 9-mer peptides having the potential to induce CD4 T-cell responses should be explored in other settings of tumor immunology as well to improve vaccination strategies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document