scholarly journals Measurement and Analysis of Inadequate Friction Mechanisms in Liquid-Buffered Mechanical Seals Utilizing Acoustic Emission Technique

Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 263-283
Author(s):  
Manuel Medina-Arenas ◽  
Fabian Sopp ◽  
Johannes Stolle ◽  
Matthias Schley ◽  
René Kamieth ◽  
...  

Mechanical seals play an important role in the reliability of a process. Currently, the condition monitoring of mechanical seals is restricted due to the limitations of the traditional monitoring methods, including classical vibration analysis. For this reason, the objective of the present work is the detection and analysis of friction mechanisms inside a mechanical seal that are unfavorable and induce fault conditions using the acoustic emission technique, which allows the measurement of high-frequency vibrations that arise due to material fatigue processes on a microscopic scale. For this purpose, several fault condition modes were induced on a test rig of an agitator vessel system with a double-acting mechanical seal and its buffer fluid system. It was possible to detect the presence of inadequate friction mechanisms due to the absence and limited use of lubrication, as well as the presence of abrasive wear, by measuring a change in the properties of the acoustic emissions. Operation under fault condition modes was analyzed using the acoustic emission technique before an increase in the leakage rate was evaluated using traditional monitoring methods. The high friction due to the deficient lubrication was characterized by a pattern in the high-frequency range that consisted of the harmonics of a fundamental frequency of about 33 kHz. These results demonstrate the feasibility of a condition monitoring system for mechanical seals using the acoustic emission technique.

2010 ◽  
Vol 36 ◽  
pp. 68-74
Author(s):  
Chuan Jun Liao ◽  
Shuang Fu Suo ◽  
Wei Feng Huang

Acoustic emission (AE) techniques are put forward to monitor rub-impacts between rotating rings and stationary rings of mechanical seals by this paper. By analyzing feature extraction methods of the typical rub-impact AE signal, the method combining of wavelet scalogram and power spectrum is found useful, and can used to attribute the feature information implicated in rub-impact AE signals of mechanical seal end faces. Both simulations and experimental research prove that the method is effective, and are used successfully to identify the typical features of different types of rub-impacts of mechanical seal end faces.


2014 ◽  
Vol 255 ◽  
pp. 121-134 ◽  
Author(s):  
Qun Ren ◽  
Marek Balazinski ◽  
Luc Baron ◽  
Krzysztof Jemielniak ◽  
Ruxandra Botez ◽  
...  

2016 ◽  
Vol 72-73 ◽  
pp. 134-159 ◽  
Author(s):  
Wahyu Caesarendra ◽  
Buyung Kosasih ◽  
Anh Kiet Tieu ◽  
Hongtao Zhu ◽  
Craig A.S. Moodie ◽  
...  

2012 ◽  
Vol 229-231 ◽  
pp. 1476-1480 ◽  
Author(s):  
Salah M. Ali Al-Obaidi ◽  
M. Salman Leong ◽  
R.I. Raja Hamzah ◽  
Ahmed M. Abdelrhman

Acoustic emission (AE) measurements are one of many non-destructive testing methods which had found applications in defects detection in machines. This paper reviews the state of the art in AE based condition monitoring with particular emphasis on rotating and reciprocating machinery applications. Advantages and limitations of the AE technique in comparison to other condition monitoring techniques in detecting common machinery faults are also discussed.


Sign in / Sign up

Export Citation Format

Share Document