scholarly journals A Closer Look on Spatiotemporal Variations of Dissolved Oxygen in Waste Stabilization Ponds Using Mixed Models

Water ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 201 ◽  
Author(s):  
Long Ho ◽  
Duy Pham ◽  
Wout Van Echelpoel ◽  
Leacky Muchene ◽  
Ziv Shkedy ◽  
...  
2004 ◽  
Vol 48 (11-12) ◽  
pp. 115-123 ◽  
Author(s):  
Y. Kim ◽  
D.L. Giokas ◽  
P.-G. Chung ◽  
D.-R. Lee

In this study it was demonstrated that when water hyacinth ponds (WHPs) are used for polishing the effluent from waste stabilization ponds (WSPs), suspended solids (mostly algal particles) are efficiently separated, which also resulted in the reduction of insoluble forms of COD and nutrients. The high pH of the WSPs effluent was easily adjusted to 6-7 as it passed through the WHPs. However, the use of water hyacinth rapidly reduced dissolved oxygen at the first cell to less than three mg/L or very frequently to a level of anaerobic state. Reduction of suspended solids at the WHPs mainly depends on the detention time and pH. An empirical separation model incorporating the detention time and pH dependence was developed.


2000 ◽  
Vol 127 (1) ◽  
pp. 21-31 ◽  
Author(s):  
S Kayombo ◽  
T.S.A Mbwette ◽  
A.W Mayo ◽  
J.H.Y Katima ◽  
S.E Jorgensen

1987 ◽  
Vol 19 (12) ◽  
pp. 145-152 ◽  
Author(s):  
H. W. Pearson ◽  
D. D. Mara ◽  
S. W. Mills ◽  
D. J. Smallman

In situ studies on waste stabilization ponds (in Portugal) showed that faecal coliform numbers were lowest at positions in the water column where pH, temperature, dissolved oxygen and algae were high. Numbers were not always lowest at the surface where light intensities were highest or in ponds where light penetration had increased through algal grazing by Daphnia. Laboratory studies showed that pH values approaching 9.0 or above increased faecal coliform die-off particularly under nutrient-poor conditions. Elevated temperatures enhanced the pH effect but the level of dissolved oxygen made little difference. Streptococcus, Salmonella and Campylobacter isolates all behaved similarly to the faecal coliforms. Daphnia grazing of the algal population in maturation ponds may reduce the microbial quality of the final effluent. These findings are discussed in relation to pond design.


1995 ◽  
Vol 31 (12) ◽  
pp. 285-290 ◽  
Author(s):  
J. I. Oragui ◽  
H. Arridge ◽  
D. D. Mara ◽  
H. W. Pearson ◽  
S. A. Silva

Rotavirus removal in waste stabilization ponds is a relatively slow process: in a series of ten ponds (a 1-d anaerobic pond followed by nine 2-d ponds) its numbers were reduced from 1.4 × 105 per litre to zero, and in an “innovative” series (a 1-day anaerobic pond, 3-d facultative pond, 3.8-d, 3-d and 5-d maturation ponds) from 5.1 × 104 per litre to <5 per litre. Faecal coliforms were better indicators of rotaviruses than was Clostridium perfringens .


1995 ◽  
Vol 31 (12) ◽  
pp. 91-101 ◽  
Author(s):  
Y. Racault ◽  
C. Boutin ◽  
A. Seguin

In 1992, a survey was conducted on the performance of waste stabilization ponds in France. The data selected come from a sample of 178 ponds, with an average capacity of 600 p.e., throughout France. For each plant, one or several input--output load measurements over a 24-h period are available. The average organic load level received is approximately 25 kg BOD/ha.d, representing 50% of the nominal load. The quality of the treated water is presented based on the type of sewerage system feeding the ponds. The results appear dispersed, however; in 70% of the cases the concentrations in COD and BOD on filtered samples are under 120 mg/l and 40 mg/l, respectively, and the concentration in TSS under 120 mg/l (discharge standards in France for waste stabilization ponds). The reductions in nitrogen and phosphorus nutrients are on average from 60% to 70%. The influence of different parameters (sewerage system type, organic load, season, age of plant, etc.) was studied. The results appear noticeably worse when the ponds receive wastewater from a strictly separate sewerage system.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06207
Author(s):  
Joshua N. Edokpayi ◽  
John O. Odiyo ◽  
Oluwaseun E. Popoola ◽  
Titus A.M. Msagati

Sign in / Sign up

Export Citation Format

Share Document