scholarly journals The Mechanism of Chlorine Damage Using Enhanced Green Fluorescent Protein-Expressing Escherichia coli

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2156
Author(s):  
Mizozoe ◽  
Otaki ◽  
Aikawa

This study investigated how chlorine inactivates and damages Escherichia coli cells. E. coli that had transformed to express enhanced green fluorescent protein (EGFP) at the cytoplasm was treated with chlorine. Damage to the cell membrane and cell wall was analyzed by measuring the fluorescence intensity of the leaked EGFP, then accounting for the fluorescence deterioration. At pH 7, E. coli was lethally damaged after treatment with chlorine, but significant leakage of EGFP was not observed. In contrast, significant leakage of EGFP was observed at pH 9, even though E. coli was not as inactivated as it was at pH 7. Flow cytometry was used to confirm the fluorescence intensity of the remaining EGFP inside the cells. No significant fluorescence loss was observed in the cells at pH 7. However, at pH 9, the fluorescence intensity in the cells decreased, indicating leakage of EGFP. These results suggest that hypochlorous acid inactivates E. coli without damaging its cell membrane and cell wall, whereas the hypochlorite ion inactivates E. coli by damaging its cell membrane and cell wall. It was possible to confirm the chlorine damage mechanism on E. coli by measuring the fluorescence intensity of the leaked EGFP.

2009 ◽  
Vol 72 (7) ◽  
pp. 1513-1520 ◽  
Author(s):  
MANAN SHARMA ◽  
DAVID T. INGRAM ◽  
JITENDRA R. PATEL ◽  
PATRICIA D. MILLNER ◽  
XIAOLIN WANG ◽  
...  

Internalization of Escherichia coli O157:H7 into spinach plants through root uptake is a potential route of contamination. ATn7-based plasmid vector was used to insert a green fluorescent protein gene into the attTn7 site in the E. coli chromosome. Three green fluorescent protein–labeled E. coli inocula were used: produce outbreak O157:H7 strains RM4407 and RM5279 (inoculum 1), ground beef outbreak O157:H7 strain 86-24h11 (inoculum 2), and commensal strain HS (inoculum 3). These strains were cultivated in fecal slurries and applied at ca. 103 or 107 CFU/g to pasteurized soils in which baby spinach seedlings were planted. No E. coli was recovered by spiral plating from surface-sanitized internal tissues of spinach plants on days 0, 7, 14, 21, and 28. Inoculum 1 survived at significantly higher populations (P < 0.05) in the soil than did inoculum 3 after 14, 21, and 28 days, indicating that produce outbreak strains of E. coli O157:H7 may be less physiologically stressed in soils than are nonpathogenic E. coli isolates. Inoculum 2 applied at ca. 107 CFU/ml to hydroponic medium was consistently recovered by spiral plating from the shoot tissues of spinach plants after 14 days (3.73 log CFU per shoot) and 21 days (4.35 log CFU per shoot). Fluorescent E. coli cells were microscopically observed in root tissues in 23 (21%) of 108 spinach plants grown in inoculated soils. No internalized E. coli was microscopically observed in shoot tissue of plants grown in inoculated soil. These studies do not provide evidence for efficient uptake of E. coli O157:H7 from soil to internal plant tissue.


2020 ◽  
Vol 8 (7) ◽  
pp. 1051 ◽  
Author(s):  
Aleksandar Božić ◽  
Robin C. Anderson ◽  
Tawni L. Crippen ◽  
Christina L. Swaggerty ◽  
Michael E. Hume ◽  
...  

Numerous Salmonella enterica serovars can cause disease and contamination of animal-produced foods. Oligosaccharide-rich products capable of blocking pathogen adherence to intestinal mucosa are attractive alternatives to antibiotics as these have potential to prevent enteric infections. Presently, a wood-derived prebiotic composed mainly of glucose-galactose-mannose-xylose oligomers was found to inhibit mannose-sensitive binding of select Salmonella Typhimurium and Escherichia coli strains when reacted with Saccharomyces boulardii. Tests for the ability of the prebiotic to prevent binding of a green fluorescent protein (GFP)-labeled S. Typhimurium to intestinal porcine epithelial cells (IPEC-J2) cultured in vitro revealed that prebiotic-exposed GFP-labeled S. Typhimurium bound > 30% fewer individual IPEC-J2 cells than did GFP-labeled S. Typhimurium having no prebiotic exposure. Quantitatively, 90% fewer prebiotic-exposed GFP-labeled S. Typhimurium cells were bound per individual IPEC-J2 cell compared to non-prebiotic exposed GFP-labeled S. Typhimurium. Comparison of invasiveness of S. Typhimurium DT104 against IPEC-J2 cells revealed greater than a 90% decrease in intracellular recovery of prebiotic-exposed S. Typhimurium DT104 compared to non-exposed controls (averaging 4.4 ± 0.2 log10 CFU/well). These results suggest compounds within the wood-derived prebiotic bound to E. coli and S. Typhimurium-produced adhesions and in the case of S. Typhimurium, this adhesion-binding activity inhibited the binding and invasion of IPEC-J2 cells.


2017 ◽  
Vol 83 (8) ◽  
Author(s):  
Shireen Kotay ◽  
Weidong Chai ◽  
William Guilford ◽  
Katie Barry ◽  
Amy J. Mathers

ABSTRACT There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients.


2013 ◽  
Vol 80 (4) ◽  
pp. 1477-1481 ◽  
Author(s):  
Karina Klevanskaa ◽  
Nadja Bier ◽  
Kerstin Stingl ◽  
Eckhard Strauch ◽  
Stefan Hertwig

ABSTRACTAn efficient electroporation procedure forVibrio vulnificuswas designed using the new cloning vector pVv3 (3,107 bp). Transformation efficiencies up to 2 × 106transformants per μg DNA were achieved. The vector stably replicated in bothV. vulnificusandEscherichia coliand was also successfully introduced intoVibrio parahaemolyticusandVibrio cholerae. To demonstrate the suitability of the vector for molecular cloning, the green fluorescent protein (GFP) gene and thevvhBAhemolysin operon were inserted into the vector and functionally expressed inVibrioandE. coli.


2009 ◽  
Vol 75 (5) ◽  
pp. 1410-1416 ◽  
Author(s):  
Beatriz Quiñones ◽  
Shane Massey ◽  
Mendel Friedman ◽  
Michelle S. Swimley ◽  
Ken Teter

ABSTRACT Escherichia coli O157:H7 is a leading cause of food-borne illness. This human pathogen produces Shiga toxins (Stx1 and Stx2) which inhibit protein synthesis by inactivating ribosome function. The present study describes a novel cell-based assay to detect Stx2 and inhibitors of toxin activity. A Vero cell line harboring a destabilized variant (half-life, 2 h) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the toxin-induced inhibition of protein synthesis. This Vero-d2EGFP cell line produced a fluorescent signal which could be detected by microscopy or with a plate reader. However, a greatly attenuated fluorescent signal was detected in Vero-d2EGFP cells that had been incubated overnight with either purified Stx2 or a cell-free culture supernatant from Stx1- and Stx2-producing E. coli O157:H7. Dose-response curves demonstrated that the Stx2-induced inhibition of enhanced green fluorescent protein fluorescence mirrored the Stx2-induced inhibition of overall protein synthesis and identified a picogram-per-milliliter threshold for toxin detection. To establish our Vero-d2EGFP assay as a useful tool for the identification of toxin inhibitors, we screened a panel of plant compounds for antitoxin activities. Fluorescent signals were maintained when Vero-d2EGFP cells were exposed to Stx1- and Stx2-containing medium in the presence of either grape seed or grape pomace extract. The antitoxin properties of the grape extracts were confirmed with an independent toxicity assay that monitored the overall level of protein synthesis in cells treated with purified Stx2. These results indicate that the Vero-d2EGFP fluorescence assay is an accurate and sensitive method to detect Stx2 activity and can be utilized to identify toxin inhibitors.


2006 ◽  
Vol 69 (2) ◽  
pp. 276-281 ◽  
Author(s):  
T. P. OSCAR ◽  
K. DULAL ◽  
D. BOUCAUD

The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has been widely used as a biomarker and has potential for use in developing predictive models for growth of pathogens on naturally contaminated food. However, constitutive production of GFP can reduce growth of transformed strains. Consequently, a high-copy plasmid with gfp under the control of a tetracycline-inducible promoter (pTGP) was constructed. The plasmid was first introduced into a tetracycline-resistant strain of Escherichia coli K-12 to propagate it for subsequent transformation of tetracycline-resistant strains of Salmonella. In contrast to transformed E. coli K-12, which only fluoresced in response to tetracycline, transformed Salmonella fluoresced maximally without tetracycline induction of gfp. Although pTGP did not function as intended in Salmonella, growth of parent and GFP E. coli K-12 was compared to test the hypothesis that induction of GFP production reduced growth. Although GFP production was not induced during growth on sterile chicken in the absence of tetracycline, maximum specific growth rate (μmax) of GFP E. coli K-12 was reduced 40 to 50% (P &lt; 0.05) at 10, 25, and 40°C compared with the parent strain. When growth of parent and GFP strains of E. coli K-12 was compared in sterile broth at 40°C, μmax and maximum population density of the GFP strain were reduced (P &lt; 0.05) to the same extent (50 to 60%) in the absence and presence of tetracycline. These results indicated that transformation reduced growth of E. coli K-12 independent of gfp induction. Thus, use of a low-copy plasmid or insertion of gfp into the chromosome may be required to construct valid strains for development of predictive models for growth of pathogens on naturally contaminated food.


Sign in / Sign up

Export Citation Format

Share Document