scholarly journals Genetic Structure and Population Demography of White-Spotted Charr in the Upstream Watershed of a Large Dam

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2406
Author(s):  
Souta Nakajima ◽  
Shun Hirota ◽  
Ayumi Matsuo ◽  
Yoshihisa Suyama ◽  
Futoshi Nakamura

White-spotted charr (Salvelinus leucomaenis leucomaenis) is an anadromous fish that has been severely harmed by human land-use development, particularly through habitat fragmentation. However, the anthropogenic impacts on populations of this species have not been evaluated, except those on small dammed-off populations. Using multiplexed ISSR genotyping by sequencing, we investigated the genetic structure of white-spotted charr in four tributaries in the upper section of the Kanayama Dam in the Sorachi River, Hokkaido Island, Japan. There were no distinct genetic structures (FST = 0.014), probably because some active individuals migrate frequently among tributaries. By model-flexible demographic simulation, historical changes in the effective population size were inferred. The result indicates that the population size has decreased since the end of the last glacial period, with three major population decline events, including recent declines that were probably associated with recent human activities. Nevertheless, populations in the watershed upstream of the Kanayama Dam are still expected to be at low risk of immediate extinction, owing to the large watershed size and the limited number of small check dams. An effective conservation measure for sustaining the white-spotted charr population is to maintain high connectivity between tributaries, such as by providing fishways in check dams during construction.

2019 ◽  
Vol 110 (5) ◽  
pp. 629-637 ◽  
Author(s):  
Jen-Pan Huang

Abstract The Western Hercules beetle (Dynastes grantii) is endemic to the highland forest habitats of southwestern United States and northern Mexico. The habitats harbor many endemic species, but are being threatened by rapid climate change and urban development. In this study, the genetic structure of D. grantii populations from southwestern United States was investigated. Specifically, genomic data from double-digest restriction-site-associated DNA sequencing libraries were utilized to test whether geographically distant populations from the Mogollon Rim (Arizona [N = 12 individuals] and New Mexico [N = 10 individuals]) are genetically structured. The study also estimated the effective population size of the Mogollon Rim populations based on genetic diversity. The results indicated that the 2 geographic populations from the Mogollon Rim were not genetically structured. A population size reduction was detected since the end of the last glacial period, which coincided with a reduction of forest habitat in the study area. The results implied that the connectivity and the size of highland forest habitats in the Mogollon Rim could have been the major factors shaping the population genetic structure and demographic history of D. grantii. The Western Hercules beetle could be a useful flagship species for local natural history education and to promote the conservation of highland forest habitats.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


2001 ◽  
Vol 79 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Michael F. Antolin ◽  
Beatrice Van Horne ◽  
Michael D. Berger, Jr. ◽  
Alisha K. Holloway ◽  
Jennifer L. Roach ◽  
...  

2009 ◽  
Vol 67 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Phillip C. Watts ◽  
Suzanne M. Kay ◽  
Drew Wolfenden ◽  
Clive J. Fox ◽  
Audrey J. Geffen ◽  
...  

Abstract Watts, P. C., Kay, S. M., Wolfenden, D., Fox, C. J., Geffen, A. J., Kemp, S. J., and Nash, R. D. M. 2010. Temporal patterns of spatial genetic structure and effective population size in European plaice (Pleuronectes platessa) along the west coast of Scotland and in the Irish Sea. – ICES Journal of Marine Science, 67: 607–616. The European plaice (Pleuronectes platessa) is a relatively mobile flatfish species, and previous studies have reported broad-scale genetic homogeneity among samples distributed throughout much of its northern European range, with no evidence for isolation-by-distance (IBD) population structure. Using microsatellite loci, the pattern of spatial genetic structure and effective population size is characterized for >800 plaice collected from locations off the west coast of Great Britain over a 3-year period (2001–2003). The plaice populations are characterized by weak spatial genetic structure, consistent with tagging data, and relatively low effective population sizes. In contrast to previous work, a pattern of isolation by distance is present among pairs of plaice from within each sampling period. However, IBD spatial structure was not observed for comparisons of plaice from different sampling years or using the entire dataset, indicating a patchy temporal genetic structure. Therefore, pooling the data from several years can mask subtle patterns of population structure and potentially confound estimation of other important demographic parameters, such as effective population size.


2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rupert Stacy ◽  
Jorge Palma ◽  
Miguel Correia ◽  
Anthony B. Wilson ◽  
José Pedro Andrade ◽  
...  

AbstractGenetic diversity is the raw foundation for evolutionary potential. When genetic diversity is significantly reduced, the risk of extinction is heightened considerably. The long-snouted seahorse (Hippocampus guttulatus) is one of two seahorse species occurring in the North-East Atlantic. The population living in the Ria Formosa (South Portugal) declined dramatically between 2001 and 2008, prompting fears of greatly reduced genetic diversity and reduced effective population size, hallmarks of a genetic bottleneck. This study tests these hypotheses using samples from eight microsatellite loci taken from 2001 and 2013, on either side of the 2008 decline. The data suggest that the population has not lost its genetic diversity, and a genetic bottleneck was not detectable. However, overall relatedness increased between 2001 to 2013, leading to questions of future inbreeding. The effective population size has seemingly increased close to the threshold necessary for the population to retain its evolutionary potential, but whether these results have been affected by sample size is not clear. Several explanations are discussed for these unexpected results, such as gene flow, local decline due to dispersal to other areas of the Ria Formosa, and the potential that the duration of the demographic decline too short to record changes in the genetic diversity. Given the results presented here and recent evidence of a second population decline, the precise estimation of both gene flow and effective population size via more extensive genetic screening will be critical to effective population management.


Sign in / Sign up

Export Citation Format

Share Document