scholarly journals Impacts of Massive Sediment Input on the Channel Geometry Adjustment of Alluvial Rivers: Revisiting the North Fork Toutle River Case

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2802
Author(s):  
Xiaofan Wang ◽  
Xudong Ma ◽  
Xingnian Liu

In this study, the impacts of massive sediment input on channel geometry adjustment were analyzed across decades based on the downstream hydraulic geometry. Massive amounts of field data and evolution models showed that the alternation of degradation and aggradation in short-to-medium-term channel adjustment is common in evolving rivers. This phenomenon has always been challenging in research; most existing studies have focused on unidirectional adjustment in short-term channel adjustment. A few studies have considered the alternation of degradation and aggradation in short-to-medium-term channel adjustment, presuming that this phenomenon is caused by water and sediment changes. However, we found that the alternations also occurred under stable water and sediment transport in the North Fork Toutle River, southwestern Washington, USA. This adjustment across decades was analyzed by downstream hydraulic geometry in this study. It was concluded that the river consumes surplus energy to reach the optimal cross section through this short-to-medium-term adjustment under stable water and sediment transport. The objective of channel adjustment is minimal energy loss.

2021 ◽  
Vol 233 ◽  
pp. 03035
Author(s):  
Zhuzhu Yu ◽  
Zhiguo He ◽  
Li Li ◽  
Taoyan Ye ◽  
Yuezhang Xia

Based on FVCOM hydrodynamic numerical model and coastline topographic data in 2013, a three-dimensional numerical model of fine sediment transport in Hangzhou Bay has been established to explore the water and sediment exchange mechanism between Hangzhou Bay and the open sea at different typical sections. The results of validation with measured and satellite retrieved data show that the model can well simulate the process of water and sediment movement in Hangzhou Bay. Compared with the calculation results of the coastline topographic data of Hangzhou Bay in 1974 and 2020, the influence mechanism of shoreline change on the water and sediment exchange mechanism between Hangzhou Bay and the open sea has been studied. The results show that the sediment transport inside and outside the Hangzhou Bay is generally in the pattern of north-inflow and south-discharge. Compared with the coastline in 1974, the sediment transport from Yangshan port in the north of Hangzhou Bay and Zhoushan Islands in the middle of Hangzhou Bay increases when the coastline is pushed into the bay in 2020, while the outward sediment transport from Jintang Channel in the South decreases. The overall trend features that the sediment transport into the bay increases, with the bay mouth silting. In the three sections extending from Hangzhou Bay to the open sea, the inflowing water and sediment of the horizontal section on the north side is decreasing, while the discharged sediment from the south side and the inflowing water and discharged sediment from the vertical section at the east side are increasing.


2021 ◽  
Vol 9 (11) ◽  
pp. 1258
Author(s):  
Viet Thanh Nguyen ◽  
Minh Tuan Vu ◽  
Chi Zhang

Two-dimensional models of large spatial domain including Cua Lo and Cua Hoi estuaries in Nghe An province, Vietnam, were established, calibrated, and verified with the observed data of tidal level, wave height, wave period, wave direction, and suspended sediment concentration. The model was then applied to investigate the hydrodynamics, cohesive sediment transport, and the morphodynamics feedbacks between two estuaries. Results reveal opposite patterns of nearshore currents affected by monsoons, which flow from the north to the south during the northeast (NE) monsoon and from the south to the north during the southeast (SE) monsoon. The spectral wave model results indicate that wave climate is the main control of the sediment transport in the study area. In the NE monsoon, sediment from Cua Lo port transported to the south generates the sand bar in the northern bank of the Cua Hoi estuary, while sediment from Cua Hoi cannot be carried to the Cua Lo estuary due to the presence of Hon Ngu Island and Lan Chau headland. As a result, the longshore sediment transport from the Cua Hoi estuary to the Cua Lo estuary is reduced and interrupted. The growth and degradation of the sand bars at the Cua Hoi estuary have a great influence on the stability of the navigation channel to Ben Thuy port as well as flood drainage of Lam River.


Sign in / Sign up

Export Citation Format

Share Document