scholarly journals Extending the Applicability of the Meyer–Peter and Müller Bed Load Transport Formula

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2817
Author(s):  
Epaminondas Sidiropoulos ◽  
Konstantinos Vantas ◽  
Vlassios Hrissanthou ◽  
Thomas Papalaskaris

The present paper deals with the applicability of the Meyer–Peter and Müller (MPM) bed load transport formula. The performance of the formula is examined on data collected in a particular location of Nestos River in Thrace, Greece, in comparison to a proposed Εnhanced MPM (EMPM) formula and to two typical machine learning methods, namely Random Forests (RF) and Gaussian Processes Regression (GPR). The EMPM contains new adjustment parameters allowing calibration. The EMPM clearly outperforms MPM and, also, it turns out to be quite competitive in comparison to the machine learning schemes. Calibrations are repeated with suitably smoothed measurement data and, in this case, EMPM outperforms MPM, RF and GPR. Data smoothing for the present problem is discussed in view of a special nearest neighbor smoothing process, which is introduced in combination with nonlinear regression.

2014 ◽  
Vol 28 (11) ◽  
pp. 3727-3743 ◽  
Author(s):  
Vasileios Kitsikoudis ◽  
Epaminondas Sidiropoulos ◽  
Vlassios Hrissanthou

Author(s):  
Gergely T. Török ◽  
János Józsa ◽  
Sándor Baranya

The aim of this study is to introduce a novel method which can separate sand or gravel dominated bed load transport in rivers with mixed-size bed material. In engineering practice, the Shields-Parker diagram could be used for such purposes, however, the method has certain applicability limits, due to the fact that it is based on uniform bed material and provides information rather on river-scale, instead of reach or local scale. When dealing with large rivers with complex hydrodynamics and morphodynamics the bed load transport modes can also indicate strong variation even locally, which requires a more suitable approach to estimate the locally unique behavior of the sediment transport. Here, we suggest that the decision criteria utilizes the shear Reynolds number (Re*). The method was verified against field and laboratory measurement data, both performed at non-uniform bed material compositions. The comparative assessment of the results show that the shear Reynolds number based method operates more reliably than the Shields-Parker diagram and it is expected to predict the sand or gravel transport domination with a < 5% uncertainty. The introduced results can greatly contribute to the improvement of numerical sediment transport modeling as well as to the field implementation of bed load transport measurements.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


1996 ◽  
Vol 40 ◽  
pp. 813-818
Author(s):  
Minoru HARADA ◽  
Kazuo ASHIDA ◽  
Takashi DENO ◽  
Yuji OHMOTO

2016 ◽  
Vol 142 (5) ◽  
pp. 04016003 ◽  
Author(s):  
Carlos R. Wyss ◽  
Dieter Rickenmann ◽  
Bruno Fritschi ◽  
Jens M. Turowski ◽  
Volker Weitbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document