scholarly journals Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3552
Author(s):  
Xinxin Geng ◽  
Chengpeng Zhang ◽  
Feng’e Zhang ◽  
Zongyu Chen ◽  
Zhenlong Nie ◽  
...  

Karst watershed refers to the total range of surface and underground recharge areas of rivers (including subterranean rivers and surface rivers) in karst areas. Karst water resources, as the primary source of domestic water supply in southwest China, are vital for the social and economic development of these regions. These resources are greatly significant for guiding water resources management in karst areas to establish a high-precision hydrological model of karst watersheds. Choosing the Daotian river basin in the Wumeng Mountains of Southwest China as the study area, this paper proposed a method for simplifying karst subterranean rivers into surface rivers by modifying the digital elevation model (DEM) based on a field survey and tracer test. This method aims to solve the inconsistency between the topographical drainage divides and actual catchment boundaries in karst areas. The Soil and Water Assessment Tool (SWAT) model was modified by replacing the single-reservoir model in the groundwater module with a three-reservoir model to depict the constraints of multiple media on groundwater discharge in the karst system. The results show that the catchment areas beyond topographic watershed were effectively identified after simplifying subterranean rivers to surface rivers based on the modified DEM data, which ensured the accuracy of the basic model. For the calibration and two validation periods, the Nash–Sutcliffe efficiencies (NSE) of the modified SWAT model were 0.87, 0.83, and 0.85, respectively, and R2 were 0.88, 0.84, and 0.86, respectively. The NSE of the modified SWAT model was 0.09 higher than that of the original SWAT model in simulating baseflow, which effectively improved the simulation accuracy of daily runoff. In addition, the modified SWAT model had a lower uncertainty within the same parameter ranges than the original one. Therefore, the modified SWAT model is more applicable to karst watersheds.

Author(s):  
Pulendra Dutta ◽  
Arup Kumar Sarma

Abstract A robust hydrological assessment is a challenging task in regions of limited hydro-climatological information. This level of uncertainty is further augmented in studies of flood hydrology for regions like the Brahmaputra River basin, where spatial variations of topography, land use, soil, and weather components are very high. The present study describes the development of a suitable hydrologic model for the data-scarce transboundary Brahmaputra River basin occupying an area of more than 5,42,000 km2. The main objective is to provide hydrologic assessment of the Brahmaputra River basin, even at locations having hardly any historical records. The Soil and Water Assessment Tool (SWAT) model is calibrated and validated using observed discharge of three sections located on the main stem. The results show a fair strength of the statistical parameters. Moreover, the model has been found to produce a satisfactory replica of historical flows at the tributaries with a fair value of correlation (R2 = 0.77) at Golaghat. The results of this model would facilitate the ability of the local authorities with science-based elements to carry out decisions on the management of water resources at the main basin, and even at the sub-basin level.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1705 ◽  
Author(s):  
Weidong Xuan ◽  
Qiang Fu ◽  
Guanghua Qin ◽  
Cong Zhu ◽  
Suli Pan ◽  
...  

Assessment of water resources from mountainous catchments is crucial for the development of upstream rural areas and downstream urban communities. However, lack of data in these mountainous catchments prevents full understanding of the response of hydrology or water resources to climate change. Meanwhile, hydrological modeling is challenging due to parameter uncertainty. In this work, one tributary of the Yarlung Zangbo River Basin (the upper stream of the Brahmaputra River) was used as a case study for hydrological modeling. Tropical Rainfall Measuring Mission (TRMM 3B42V7) data were utilized as a substitute for gauge-based rainfall data, and the capability of simulating precipitation, snow, and groundwater contributions to total runoff by the Soil and Water Assessment Tool (SWAT) was investigated. The uncertainty in runoff proportions from precipitation, snowmelt, and groundwater was quantified by a batch-processing module. Hydrological signatures were finally used to help identify if the hydrological model simulated total runoff and corresponding proportions properly. The results showed that: (1) TRMM data were very useful for hydrological simulation in high and cold mountainous catchments; (2) precipitation was the primary contributor nearly all year round, reaching 56.5% of the total runoff on average; (3) groundwater occupied the biggest proportion during dry seasons, whereas snowmelt made a substantial contribution only in late spring and summer; and (4) hydrological signatures were useful for helping to evaluate the performance of the hydrological model.


2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


2012 ◽  
Vol 16 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
Y. Luo ◽  
J. Arnold ◽  
P. Allen ◽  
X. Chen

Abstract. Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2626 ◽  
Author(s):  
Yongyu Song ◽  
Jing Zhang ◽  
Xianyong Meng ◽  
Yuyan Zhou ◽  
Yuequn Lai ◽  
...  

As a key factor in the water cycle and climate change, the quality of precipitation data directly affects the hydrological processes of the river basin. Although many precipitation products with high spatial and temporal resolutions are now widely used, it is meaningful and necessary to investigate and evaluate their merits and demerits in hydrological applications. In this study, two satellite-based precipitation products (Tropical Rainfall Measurement Mission, TRMM; Integrated Multi-satellite Retrievals for GPM, IMERG) and one reanalysis precipitation product (China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model, CMADS) are studied to compare their streamflow simulation performance in the Qujiang River Basin, China, using the SWAT model with gauged rainfall data as a reference. The main conclusions are as follows: (1) CMADS has stronger precipitation detection capabilities compared to gauged rainfall, while TRMM results in the most obvious overestimation in the four sub-basins. (2) In daily and monthly streamflow simulations, CMADS + SWAT mode offers the best performance. CMADS and IMERG can provide high quality precipitation data for data-scarce areas, and IMERG can effectively avoid the overestimation of streamflow caused by TRMM, especially on a daily scale. (3) The runoff projections of the three modes under RCP (Representative Concentration Pathway) 4.5 was higher than that of RCP 8.5 on the whole. IMERG + SWAT overestimates the surface water resources of the basin compared to CMADS + SWAT, while TRMM + SWAT provides the most stable uncertainty. These findings contribute to the comparison of the differences among the three precipitation products and provides a reference for the selection of precipitation data in similar regions.


Author(s):  
Xian-yong Meng ◽  
Hao Wang ◽  
Si-yu Cai ◽  
Xue-song Zhang ◽  
Guo-yong Leng ◽  
...  

Large-scale hydrological modeling in China is challenging given the sparse meteorological stations and large uncertainties associated with atmospheric forcing data.Here we introduce the development and use of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) in the Heihe River Basin(HRB) for improving hydrologic modeling, by leveraging the datasets from the China Meteorological Administration Land Data Assimilation System (CLDAS)(including climate data from nearly 40000 area encryption stations, 2700 national automatic weather stations, FengYun (FY) 2 satellite and radar stations). CMADS uses the Space Time Multiscale Analysis System (STMAS) to fuse data based on ECWMF ambient field and ensure data accuracy. In addition, compared with CLDAS, CMADS includes relative humidity and climate data of varied resolutions to drive hydrological models such as the Soil and Water Assessment Tool (SWAT) model. Here, we compared climate data from CMADS, Climate Forecast System Reanalysis (CFSR) and traditional weather station (TWS) climate forcing data and evaluatedtheir applicability for driving large scale hydrologic modeling with SWAT. In general, CMADS has higher accuracy than CFRS when evaluated against observations at TWS; CMADS also provides spatially continuous climate field to drive distributed hydrologic models, which is an important advantage over TWS climate data, particular in regions with sparse weather stations. Therefore, SWAT model simulations driven with CMADS and TWS achieved similar performances in terms of monthly and daily stream flow simulations, and both of them outperformed CFRS. For example, for the three hydrological stations (Ying Luoxia, Qilian Mountain, and ZhaMasheke) in the HRB at the monthly and daily Nash-Sutcliffe efficiency ranges of 0.75-0.95 and 0.58-0.78, respectively, which are much higher than corresponding efficiency statistics achieved with CFSR (monthly: 0.32-0.49 and daily: 0.26 – 0.45). The CMADS dataset is available free of charge and is expected to a valuable addition to the existing climate reanalysis datasets for deriving distributed hydrologic modeling in China and other countries in East Asia.


Author(s):  
Lal Muthuwatta ◽  
Aditya Sood ◽  
Matthew McCartney ◽  
Nishchitha Sandeepana Silva ◽  
Alfred Opere

Abstract. In the Tana River Basin in Kenya, six Regional Circulation Models (RCMs) simulating two Representative Concentration Pathways (RCPs) (i.e., 4.5 and 8.5) were used as input to the Soil and Water Assessment Tool (SWAT) model to determine the possible implications for the hydrology and water resources of the basin. Four hydrological characteristics – water yield, groundwater recharge, base flow and flow regulation – were determined and mapped throughout the basin for three 30-year time periods: 2020–2049, 2040–2069 and 2070–2099. Results were compared with a baseline period, 1983–2011. All four hydrological characteristics show steady increases under both RCPs for the entire basin but with considerable spatial heterogeneity and greater increases under RCP 8.5 than RCP 4.5. The results have important implications for the way water resources in the basin are managed. It is imperative that water managers and policy makers take into account the additional challenges imposed by climate change in operating built infrastructure.


2011 ◽  
Vol 8 (6) ◽  
pp. 10397-10424 ◽  
Author(s):  
Y. Luo ◽  
J. Arnold ◽  
P. Allen ◽  
X. Chen

Abstract. Baseflow is an important component in hydrological modeling. Complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during high-flow period but very slowly during the low-flow period in rivers in arid and cold Northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow reacting reservoir and applied to the Manas River basin in Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case, respectively. The filter-based method estimated the baseflow index as 0.60, while the model-based as o.45. The filter-based baseflow responds almost immediately to surface runoff occurrence at onset of rising limb, while the model-based with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1135 ◽  
Author(s):  
Yalina Montecelos-Zamora ◽  
Tereza Cavazos ◽  
Thomas Kretzschmar ◽  
Enrique Vivoni ◽  
Gerald Corzo ◽  
...  

The soil and water assessment tool (SWAT) model was applied for the first time in Cuba to assess the potential impacts of climate change on water availability in the Cauto River basin. The model was calibrated (and validated) for the 2001–2006 (2007–2010) period at a monthly timescale in two subbasins La Fuente and Las Coloradas, representative of middle and upper sections of the Cauto basin; the calibrated models showed good performance. The output available for the regional climate Model RegCM4.3 was used to force the calibrated SWAT models to simulate a baseline (1970–2000) period and near-future (2015–2039) hydrologic regimes under the representative concentration pathway (RCP) 8.5 emission scenario. The future projections suggest regional increases of 1.5 °C in mean annual temperature and a 38% decrease in mean annual precipitation in the subbasins. These changes translate to possible reductions in the annual streamflow of up to 61% with respect to the baseline period, whereas the aquifer recharge in the basin is expected to decrease up to 58%, with a consequent reduction of groundwater flow, especially during the boreal summer wet season. These projection scenarios should be of interest to water resources managers in tropical regions.


Sign in / Sign up

Export Citation Format

Share Document