scholarly journals Hydrological Modeling of Climate Change Impacts in a Tropical River Basin: A Case Study of the Cauto River, Cuba

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1135 ◽  
Author(s):  
Yalina Montecelos-Zamora ◽  
Tereza Cavazos ◽  
Thomas Kretzschmar ◽  
Enrique Vivoni ◽  
Gerald Corzo ◽  
...  

The soil and water assessment tool (SWAT) model was applied for the first time in Cuba to assess the potential impacts of climate change on water availability in the Cauto River basin. The model was calibrated (and validated) for the 2001–2006 (2007–2010) period at a monthly timescale in two subbasins La Fuente and Las Coloradas, representative of middle and upper sections of the Cauto basin; the calibrated models showed good performance. The output available for the regional climate Model RegCM4.3 was used to force the calibrated SWAT models to simulate a baseline (1970–2000) period and near-future (2015–2039) hydrologic regimes under the representative concentration pathway (RCP) 8.5 emission scenario. The future projections suggest regional increases of 1.5 °C in mean annual temperature and a 38% decrease in mean annual precipitation in the subbasins. These changes translate to possible reductions in the annual streamflow of up to 61% with respect to the baseline period, whereas the aquifer recharge in the basin is expected to decrease up to 58%, with a consequent reduction of groundwater flow, especially during the boreal summer wet season. These projection scenarios should be of interest to water resources managers in tropical regions.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiyong Wu ◽  
Heng Xiao ◽  
Guihua Lu ◽  
Jinming Chen

The water resources in the Yellow River basin (YRB) are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC) macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperature projected by the RegCM3 high-resolution regional climate model under the IPCC scenario A2. Results show that, under the scenario A2, the mean annual temperature of the basin could increase by 1.6°C, while mean annual precipitation could decrease by 2.6%. There could be an 11.6% reduction in annual runoff in the basin according to the VIC projection. However, there are marked regional variations in these climate change impacts. Reductions of 13.6%, 25.7%, and 24.6% could be expected in the regions of Hekouzhen to Longmen, Longmen to Sanmenxia, and Sanmenxia to Huayuankou, respectively. Our study suggests that the condition of water resources in the YRB could become more severe in the period from 2001 to 2030 under the scenario A2.


2021 ◽  
Vol 13 (17) ◽  
pp. 9689
Author(s):  
Tewekel Melese Gemechu ◽  
Hongling Zhao ◽  
Shanshan Bao ◽  
Cidan Yangzong ◽  
Yingying Liu ◽  
...  

Changes in hydrological cycles and water resources will certainly be a direct consequence of climate change, making the forecast of hydrological components essential for water resource assessment and management. This research was thus carried out to estimate water balance components and water yield under current and future climate change scenarios and trends in the Guder Catchment of the Upper Blue Nile, Ethiopia, using the soil and water assessment tool (SWAT). Hydrological modeling was efficaciously calibrated and validated using the SUFI-2 algorithm of the SWAT model. The results showed that water yield varied from 926 mm to 1340 mm per year (1986–2016). Regional climate model (RCM) data showed, under representative concentration pathways (RCP 8.5), that the precipitation will decrease by up to 14.4% relative to the baseline (1986–2016) precipitation of 1228 mm/year, while the air temperature will rise under RCP 8.5 by +4.4 °C in the period from 2057 to 2086, possibly reducing the future basin water yield output, suggesting that the RCP 8.5 prediction will be warmer than RCP 4.5. Under RCP 8.5, the total water yield from 2024 to 2086 may be reduced by 3.2 mm per year, and a significant trend was observed. Local government agencies can arrange projects to solve community water-related issues based on these findings.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2020 ◽  
Vol 7 (8) ◽  
pp. 191957 ◽  
Author(s):  
Muhammad Izhar Shah ◽  
Asif Khan ◽  
Tahir Ali Akbar ◽  
Quazi K. Hassan ◽  
Asim Jahangir Khan ◽  
...  

The Upper Indus Basin (UIB) is a major source of supplying water to different areas because of snow and glaciers melt and is also enduring the regional impacts of global climate change. The expected changes in temperature, precipitation and snowmelt could be reasons for further escalation of the problem. Therefore, estimation of hydrological processes is critical for UIB. The objectives of this paper were to estimate the impacts of climate change on water resources and future projection for surface water under different climatic scenarios using soil and water assessment tool (SWAT). The methodology includes: (i) development of SWAT model using land cover, soil and meteorological data; (ii) calibration of the model using daily flow data from 1978 to 1993; (iii) model validation for the time 1994–2003; (iv) bias correction of regional climate model (RCM), and (v) utilization of bias-corrected RCM for future assessment under representative concentration pathways RCP4.5 and RCP8.5 for mid (2041–2070) and late century (2071–2100). The results of the study revealed a strong correlation between simulated and observed flow with R 2 and Nash–Sutcliff efficiency (NSE) equal to 0.85 each for daily flow. For validation, R 2 and NSE were found to be 0.84 and 0.80, respectively. Compared to baseline period (1976–2005), the result of RCM showed an increase in temperature ranging from 2.36°C to 3.50°C and 2.92°C to 5.23°C for RCP4.5 and RCP8.5 respectively, till the end of the twenty-first century. Likewise, the increase in annual average precipitation is 2.4% to 2.5% and 6.0% to 4.6% (mid to late century) under RCP4.5 and RCP8.5, respectively. The model simulation results for RCP4.5 showed increase in flow by 19.24% and 16.78% for mid and late century, respectively. For RCP8.5, the increase in flow is 20.13% and 15.86% during mid and late century, respectively. The model was more sensitive towards available moisture and snowmelt parameters. Thus, SWAT model could be used as effective tool for climate change valuation and for sustainable management of water resources in future.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Nega Chalie Emiru ◽  
John Walker Recha ◽  
Julian R. Thompson ◽  
Abrham Belay ◽  
Ermias Aynekulu ◽  
...  

This study investigated the impacts of climate change on the hydrology of the Upper Awash Basin, Ethiopia. A soil and water assessment tool (SWAT) model was calibrated and validated against observed streamflow using SWAT CUP. The Mann–Kendall trend test (MK) was used to assess climate trends. Meteorological drought (SPEI) and hydrological drought (SDI) were also investigated. Based on the ensemble mean of five global climate models (GCMs), projected increases in mean annual maximum temperature over the period 2015–2100 (compared with a 1983–2014 baseline) range from 1.16 to 1.73 °C, while increases in minimum temperature range between 0.79 and 2.53 °C. Increases in mean annual precipitation range from 1.8% at Addis Ababa to 45.5% over the Hombole area. High streamflow (Q5) declines at all stations except Ginchi. Low flows (Q90) also decline with Q90 equaling 0 m3s−1 (i.e., 100% reduction) at some gauging stations (Akaki and Hombole) for individual GCMs. The SPEI confirmed a significant drought trend in the past, while the frequency and severity of drought will increase in the future. The basin experienced conditions that varied from modest dry periods to a very severe hydrological drought between 1986 and 2005. The projected SDI ranges from modestly dry to modestly wet conditions. Climate change in the basin would enhance seasonal variations in hydrological conditions. Both precipitation and streamflow will decline in the wet seasons and increase in the dry seasons. These changes are likely to have an impact on agricultural activities and other human demands for water resources throughout the basin and will require the implementation of appropriate mitigation measures.


2016 ◽  
Vol 4 (8) ◽  
pp. 161-173
Author(s):  
Stephen Kibe Rwigi ◽  
Jeremiah N. Muthama ◽  
Alfred O. Opere ◽  
Franklin J. Opijah ◽  
Francis N. Gichuki

Potential impacts of climate change on surface water yields over the Sondu River basin in the western region of Kenya were analysed using the Soil and Water Assessment Tool (SWAT) model with climate input data obtained from the fourth generation coupled Ocean-Atmosphere European Community Hamburg Model (ECHAM4) using the Providing Regional Climates for Impacts Studies (PRECIS) model. Daily time step regional climate scenarios at a spatial grid resolution of 0.44Ëš over the Eastern Africa region were matched to the Sondu river basin and used to calibrate and validate the SWAT model.Analysis of historical and projected rainfall over the basin strongly indicated that the climate of the area will significantly change with wetter climates being experienced by 2030 and beyond. Projected monthly rainfall distribution shows increasing trends in the relatively dry DJF and SON seasons while showing decreasing trends in the relatively wet MAM and JJA seasons. Potential changes in water yields resulting from climate change were computed by comparing simulated yields under climate change scenarios with those simulated under baseline conditions. There was evidence of substantial increases in water yields ranging between 88% and 110% of the baseline yields by 2030 and 2050 respectively. Although simulated water yields are subject to further verification from observed values, this study has provided useful information about potential changes in water yields as a result of climate change over the Sondu River basin and in similar basins in this region.


2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


2012 ◽  
Vol 16 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
Y. Luo ◽  
J. Arnold ◽  
P. Allen ◽  
X. Chen

Abstract. Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sidong Zeng ◽  
Chesheng Zhan ◽  
Fubao Sun ◽  
Hong Du ◽  
Feiyu Wang

Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model) and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods) are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.


Sign in / Sign up

Export Citation Format

Share Document