scholarly journals Use of Bathymetric and LiDAR Data in Generating Digital Elevation Model over the Lower Athabasca River Watershed in Alberta, Canada

Water ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Ehsan Chowdhury ◽  
Quazi Hassan ◽  
Gopal Achari ◽  
Anil Gupta
Author(s):  
A. İ. Durmaz

DEM (Digital Elevation Models) is the best way to interpret topography on the ground. In recent years, lidar technology allows to create more accurate elevation models. However, the problem is this technology is not common all over the world. Also if Lidar data are not provided by government agencies freely, people have to pay lots of money to reach these point clouds. In this article, we will discuss how we can create digital elevation model from less accurate mobile devices’ GPS data. Moreover, we will evaluate these data on the same mobile device which we collected data to reduce cost of this modeling.


2020 ◽  
Author(s):  
S.N. Heinlein ◽  
et al.

<div>Video S1: Grayscale digital elevation model generated from high-resolution lidar data illustrating surface expressions at the 1 m to tens of meters scale. Video S2: False-color digital elevation model generated from high-resolution lidar data illustrating surface expressions at the 1 m to tens of meters scale.<br></div>


2020 ◽  
Author(s):  
S.N. Heinlein ◽  
et al.

<div>Video S1: Grayscale digital elevation model generated from high-resolution lidar data illustrating surface expressions at the 1 m to tens of meters scale. Video S2: False-color digital elevation model generated from high-resolution lidar data illustrating surface expressions at the 1 m to tens of meters scale.<br></div>


Author(s):  
J. Octariady ◽  
A. Hikmat ◽  
E. Widyaningrum ◽  
R. Mayasari ◽  
M. K. Fajari

Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013&amp;ndash;2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document