Handling and Fixation of Permanent Magnets

2013 ◽  
Vol 769 ◽  
pp. 3-10 ◽  
Author(s):  
Jan Tremel ◽  
Benjamin Hofmann ◽  
Florian Risch

Due to rapid developments within the family of rare-earth materials innovative electrical machines can nowadays be used as high efficient generators in various power, as well as rugged constructed machines for automobile battery based propulsion in hybrid and full electric vehicles. The production of different motor concepts spread into different design variants and creates complex variations especially regarding the rotor. Deriving from various research projects, the handling of the permanent magnet components is investigated, including the development of new assembly and fixation methods.

2021 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Ali Al-Qarni ◽  
Ayman EL-Refaie

This paper covers a new emerging class of electrical machines, namely, Magnetic Gears (MGs) and Magnetically Geared Machines (MGMs). This particular kind of gears/machines is capable of either scaling up or down the revolutions-per-minute to meet various load profiles as in the case of mechanical gearboxes, but with physical isolation between the rotating components. This physical isolation between the rotational components leads to several advantages in favor of MGs and MGMs over mechanical gearboxes. Although MGs and MGMs can potentially provide a solution for some of the practical issues of mechanical gears, MGs and MGMs have two major challenges that researchers have been trying to address. Those challenges are the high usage of rare-earth Permanent Magnet (PM) materials and the relatively complex mechanical structure of MGs and MGMs, both of which are a consequence of the multi-airgap design. This paper presents designs that reduce the PM rare-earth content for Electric Vehicles (EVs). Additionally, the paper will ensure having practical designs that do not run the risk of permanent demagnetization. The paper will also discuss some new designs to simplify the mechanical structure.


2018 ◽  
Vol 55 (4) ◽  
pp. 13-23 ◽  
Author(s):  
A. Rassõlkin ◽  
A. Kallaste ◽  
S. Orlova ◽  
L. Gevorkov ◽  
T. Vaimann ◽  
...  

Abstract The paper discusses the current developments in the recycling of electrical machines. The main attention is devoted to three types of motors: synchronous reluctance motor, permanent magnet assisted synchronous reluctance motor, and induction motor. Base materials of such electrical machines are also described in the paper. Rare-earth permanent magnets used in electrical machines are review separately. Moreover, the paper considers the features of the disassembly and recycling options.


2019 ◽  
Vol 86 (2) ◽  
pp. 20901
Author(s):  
Ziwei Li ◽  
Afef Kedous-Lebouc ◽  
Jean-Marc Dubus ◽  
Lauric Garbuio ◽  
Sophie Personnaz

The global supply of heavy rare earth magnets can become risky with the soaring demand of rare earth permanent magnet (PM) machines. One of the promising solutions is to reuse or recycle permanent magnets from end-of-Life electrical machines. This paper is an overview study of the state-of-the-art permanent magnet reuse and recycling research for electrical machines. Some methodologies for quantifying the recyclability of permanent magnet of electrical machines are also introduced.


1987 ◽  
Vol 96 ◽  
Author(s):  
J. Chavanne ◽  
J. Laforest ◽  
R. Pauthenet

ABSTRACTThe high remanence and coercivity of the new permanent magnet materials are of special interest in the static applications. High ordering temperature and large uniaxial anisotropy at the origin of their good permanent magnet properties are obtained in rare earth-transition metal compounds. Binary SmCo5 and Sm2Co17 and ternary Nd2Fe14B compounds are the basis materials of the best permanent magnets. New concepts of calculations of static devices with these magnets can be applied : the magnetization can be considered as rigid, the density of the surface Amperian current is constant, the relative permeability is approximately 1 and the induction calculations are linear. Examples of hexapoles with Sm-Co and NdFeB magnets are described and the performances are compared. The problems of temperature behaviour and corrosion resistance are underlined.


2021 ◽  
Vol 5 (1) ◽  
pp. 74
Author(s):  
Fernando Coelho ◽  
Shoshan Abrahami ◽  
Yongxiang Yang ◽  
Benjamin Sprecher ◽  
Zhijie Li ◽  
...  

Neodymium-Iron-Boron (NdFeB) based permanent magnets are indispensable in today’s technology-driven society. Moreover, their use is likely to increase since they are key in clean energy applications such as wind turbines, hybrid/electric vehicles, and electric bikes. They contain critical raw materials as rare earth elements are used. Indeed, permanent magnets are considered strategic materials by the EU, and their recycling represents a potential secondary supply to decrease the import dependence. The VALOMAG project is developing a technical solution to recover rare earth (RE) based permanent magnets by dismantling end-of-life (EoL) products such as computer hard disc drives, electric motors, and generators from electric vehicles and wind turbines. It also assesses two short loop recycling technologies: Hydrogen Decrepitation (HD) or Hydrogenation–Disproportionation–Desorption–Recombination (HDDR) and strip-casting for high and medium quality magnet wastes; and hydrometallurgical processes for EoL low-quality magnets. Moreover, Life Cycle Assessment (LCA) and Process Integration with a Flowsheet simulation tool will integrate the whole recycling value chain (collection, dismantling, physical and chemical treatment options, and re-manufacturing) and assess the environmental impact and processes efficiency. A market study on the types and expected future quantities for the scrap magnets and the characterisation of the EoL magnets from hard disc drives (HDD) will be presented as preliminary results. Pre-treatment and sorting of 2.5 tons of NdFeB magnets scraps were carried out, and the two short loop recycling routes and the hydrometallurgical route are under investigation at the lab and pilot scale. The results will be used to develop a process integration and to assess the three routes through LCA.


2021 ◽  
pp. 46-51
Author(s):  
V.A. Bovda ◽  
A.M. Bovda ◽  
I.S. Guk ◽  
V.N. Lyashchenko ◽  
A.O. Mytsykov ◽  
...  

High performance rare-earth permanent magnets become crucial components of modern electron accelerators. PLP (pressless process) method was described as the advanced production step in the current rare-earth permanent magnet manufacturing. The radiation resistance of SmCo and Nd-Fe-B magnets under electron beam with 10 and 23 MeV and bremsstrahlung were studied. Dipole magnetic systems on the base of rare-earth permanent magnets were designed for the technological electron accelerators at NSC KIPT.


Significance Ten years after first imposing export restrictions on these metals, China's dominance has shifted but not waned. President Xi Jinping's visit to a rare earth magnet factory at the height of the trade war with Washington in 2019 highlights how China's dominance has moved downstream. Impacts Permanent magnets will account for three-quarters of rare earth demand by 2030, up from one-quarter today. Electric vehicles and offshore wind will drive demand and be most vulnerable to supply shocks. The United States has ramped up mining production at home, and by next year could start processing, which is today done in China. The environmental burden that China has borne for decades will shift towards other countries, particularly in South-east Asia.


Sign in / Sign up

Export Citation Format

Share Document