scholarly journals Design and Performance Analysis of Misalignment Tolerant Charging Coils for Wireless Electric Vehicle Charging Systems

2021 ◽  
Vol 12 (3) ◽  
pp. 89
Author(s):  
Eiman ElGhanam ◽  
Mohamed Hassan ◽  
Ahmed Osman ◽  
Hanin Kabalan

In order to design a high efficiency Wireless Electric Vehicle Charging (WEVC) system, the design of the different system components needs to be optimized, particularly the design of a high-coupling, misalignment-tolerant inductive link (IL), comprising primary and secondary charging coils. Different coil geometries can be utilized for the primary and the secondary sides, each with a set of advantages and drawbacks in terms of weight, cost, coupling at perfect alignment and coupling at lateral misalignments. In this work, a Finite Element Method (FEM)-based systematic approach for the design of double-D (DD) charging coils is presented in detail. In particular, this paper studies the effect of different coil parameters, namely the number of turns and the turn-to-turn spacing, on the coupling performance of the IL at perfect alignment and at ±200 mm lateral misalignment, given a set of space constraints. The proposed design is verified by an experimental prototype to validate the accuracy of the FEM model and the simulation results. Accordingly, FEM simulations are utilized to compare the performance of rectangular, DD and DDQ coils. The FEM results prove the importance of utilizing an additional quadrature coil on the secondary side, despite the added weight and cost, to further improve the misalignment tolerance of the proposed inductive link design.

2021 ◽  
Vol 335 ◽  
pp. 02007
Author(s):  
Gowthamraj Rajendran ◽  
Chockalingam Aravind Vaithilingam ◽  
Kanendra Naidu ◽  
Kameswara Satya Prakash ◽  
Md Rishad Ahmed

Wide bandgap (WBG) semiconductors offer better switching and lower losses, and it is not uncommon to utilize them for high power density, high-efficiency applications. Gallium nitride (GaN) and Silicon carbide (SiC) are the most common WBG materials that are responsible for major switching level changes relative to silicon (Si) devices. This paper explores the contrast of performance between Si, SiC, and GaN devices. The output performance of Si, SiC, and GaN power devices includes efficiency, energy bandgap, thermal conductivity, carrier mobility, saturation speed, power density, switching characteristics, and conduction losses. This article also proposes a Vienna rectifier with GaN materials, which operates as a front-end rectifier on a high-density battery charger targeted at high-performance applications such as electric vehicle charging stations, aircraft applications, and welding power sources. The system would reduce the total harmonics distortion (THD) to less than 5%, and the power factor would be increased to unity to satisfy the IEEE-519 standard.


2020 ◽  
Vol 6 (1) ◽  
pp. 60-74
Author(s):  
Ratil H Ashique

The electric vehicle (EV) charging systems employ dc-dc power converters as EV chargers. Currently, the expected high penetration of electric vehicle (EV) demands for the integration of the renewable energy sources (RES) into the electric vehicle charging system as a promising solution to cut down the load on the electrical grid. These systems interface with RES by implementing dc-dc power converters. Moreover, with the advent of high-power dc charging, the charging efficiency is largely dependent on the performance of the power converters. Hence, to improve the charging, the soft switching dc-dc converters are implemented to maintain low switching losses and to achieve high-efficiency operation. This paper reviews the non-isolated, soft switching dc-dc power converters for EV charging application. For this purpose, different types of soft switching topologies, namely the snubber, the series resonant, the shunt resonant and the pulse frequency modulated converters are investigated. The advantages and the disadvantages associated with these converters are highlighted. Furthermore, to perform a comparative evaluation, the topologies are simulated in a standard simulation platform. Consequently, the relative standing of the converters depending on several parameters, i.e. the component count, the output voltage and current ripple, the soft switching range, and the power losses are established. Finally, based on these results, the optimum applicability of the converters in the EV charging application is determined. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 6(1), Dec 2019 P 60-74


Sign in / Sign up

Export Citation Format

Share Document