scholarly journals Design considerations for fast AC battery chargers

2013 ◽  
Vol 6 (1) ◽  
pp. 147-154
Author(s):  
Manuele Bertoluzzo ◽  
Giuseppe Buja ◽  
Giovanni Pede
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Luca Pugi ◽  
Alberto Reatti ◽  
Fabio Corti

There is a wide literature concerning the application of inductive power transfer (IPT) to light railway systems. In this work, proposed application is innovative with respect to existing literature: static current collection on conventional railway lines is proposed in order to replace the functionalities implemented by conventional battery chargers and the so-called railway “parking” system. According to standards in force, current collection in standstill conditions is limited since pantograph contact shoes and catenary wires have to be protected by thermal overload. These limitations have to be considered since power demand for all the services installed on modern coaches should be higher than 20-40kW. This is a critical technical issue especially for long compositions that have to be prepared for service by activating on-board subsystems such as heating and air conditioning. Additional possible applications should be related to refrigerated wagons in freight compositions. In all these cases the availability of a simple, safe, and compact system should be useful to ensure a wireless power collection to on-board equipment. In this work authors introduce the proposed application and perform some preliminary design considerations. With respect to current literature on IPT systems, authors also introduce some innovative design criteria based on the analogy between resonant electrical system and corresponding mechanical ones. In this way, sizing of the proposed IPT system can be performed using modal methods that are also used for the proper sizing of mechanical vibrating systems, such as example, vehicle suspensions, or pantograph systems.


Author(s):  
S.D. Smith ◽  
R.J. Spontak ◽  
D.H. Melik ◽  
S.M. Buehler ◽  
K.M. Kerr ◽  
...  

When blended together, homopolymers A and B will normally macrophase-separate into relatively large (≫1 μm) A-rich and B-rich phases, between which exists poor interfacial adhesion, due to a low entropy of mixing. The size scale of phase separation in such a blend can be reduced, and the extent of interfacial A-B contact and entanglement enhanced, via addition of an emulsifying agent such as an AB diblock copolymer. Diblock copolymers consist of a long sequence of A monomers covalently bonded to a long sequence of B monomers. These materials are surface-active and decrease interfacial tension between immiscible phases much in the same way as do small-molecule surfactants. Previous studies have clearly demonstrated the utility of block copolymers in compatibilizing homopolymer blends and enhancing blend properties such as fracture toughness. It is now recognized that optimization of emulsified ternary blends relies upon design considerations such as sufficient block penetration into a macrophase (to avoid block slip) and prevention of a copolymer multilayer at the A-B interface (to avoid intralayer failure).


Author(s):  
Y. Harada ◽  
K. Tsuno ◽  
Y. Arai

Magnetic objective lenses, from the point of view of pole piece geometry, can he roughly classified into two types, viz., symmetrical and asymmetrical. In the case of the former, the optical properties have been calculated by several authors1-3) and the results would appear to suggest that, in order to reduce the spherical and chromatic aberration coefficients, Cs and Cc, it is necessary to decrease the half-width value of the axial field distribution and to increase the peak flux density. The expressions for either minimum Cs or minimum Cc were presented in the form of ‘universal’ curves by Mulvey and Wallington4).


2003 ◽  
Author(s):  
Kimberly Erickson ◽  
Tracey E. Rizzuto

Sign in / Sign up

Export Citation Format

Share Document