Implementation of a Wind Turbine Blade Design Tool in an Open Source Integrated Development Environment

2012 ◽  
Author(s):  
Paulo Rocha ◽  
Angelo Modolo ◽  
Daniel Albiero
2012 ◽  
Vol 36 (4) ◽  
pp. 365-388 ◽  
Author(s):  
P.J. Schubel ◽  
R.J. Crossley

2011 ◽  
Vol 57 (5) ◽  
pp. 466-472 ◽  
Author(s):  
TongGuang Wang ◽  
Long Wang ◽  
Wei Zhong ◽  
BoFeng Xu ◽  
Li Chen

2011 ◽  
Vol 88-89 ◽  
pp. 549-553
Author(s):  
Wen Xian Tang ◽  
Cheng Cheng ◽  
Yun Di Cai ◽  
Fei Wang

According to the design procedure of wind turbine blade, a design method that can make CAD software joint used was brought up. Wilson method was used to design and calculate the main data of blade. On this basis, the three-dimensional solid model of wind turbine blade could get by using and playing the function of different CAD software. This study provided a reference for the design of wind turbine blade and other similar complicated structures, which settles the basis for the further analysis of blade.


2021 ◽  
Author(s):  
Sayem Zafar

The objective of the project was to design a small wind turbine blade which is aerodynamically efficient and easy to manufacture. Preliminary aerodynamic analysis concluded NACA 63-425 to be the most efficient airfoil. Blade geometry was determined after calculating baseline geometric values for low drag which was then used to calculate power. Blade's structural integrity was studied using ANSYS® software. Tested results yielded that a single layer of E-fibreglass-epoxy is good enough to sustain the prescribed loads. The results were used to calculate the total weight of the blade which was then used to determine the start-up speed. Overall the project was successful in designing a wind turbine blade that produced 450 [W] of electrical power at 4[m/s] wind speed with the start-up speed of around 2[m/d]. The project fulfilled its objective which was to design a more effective wind turbine blade with manufacturability in mind.


2021 ◽  
Author(s):  
Sayem Zafar

The objective of the project was to design a small wind turbine blade which is aerodynamically efficient and easy to manufacture. Preliminary aerodynamic analysis concluded NACA 63-425 to be the most efficient airfoil. Blade geometry was determined after calculating baseline geometric values for low drag which was then used to calculate power. Blade's structural integrity was studied using ANSYS® software. Tested results yielded that a single layer of E-fibreglass-epoxy is good enough to sustain the prescribed loads. The results were used to calculate the total weight of the blade which was then used to determine the start-up speed. Overall the project was successful in designing a wind turbine blade that produced 450 [W] of electrical power at 4[m/s] wind speed with the start-up speed of around 2[m/d]. The project fulfilled its objective which was to design a more effective wind turbine blade with manufacturability in mind.


Sign in / Sign up

Export Citation Format

Share Document