scholarly journals Sensitivity analysis of flexible pavement performance parameters in the mechanistic-empirical design guide

Author(s):  
Armando Orobio
Author(s):  
Tommy Nantung ◽  
Ghassan Chehab ◽  
Scott Newbolds ◽  
Khaled Galal ◽  
Shuo Li ◽  
...  

The release of the Mechanistic–Empirical Design Guide for New and Rehabilitated Pavement Structures (M-E design guide) generated a new paradigm for designing and analyzing pavement structures. It is expected to replace the commonly used empirical design methodologies. The M-E design guide uses a comprehensive suite of input parameters deemed necessary to design pavements with high reliability and to predict pavement performance and distresses realistically. However, the considerable amount of input needed and the selection of the corresponding reliability level for each might present state highway agencies with complexities and challenges in its implementation. An overview is presented of ongoing investigative studies, sensitivity analyses, and preimplementation initiatives conducted by the Indiana Department of Transportation (INDOT) in an effort to accelerate the adoption of the new pavement design guide by efficiently using existing design parameters and determining those parameters that influence the predicted performance the most. Once the sensitive inputs are identified, the large amount of other required design input parameters can be significantly reduced to a manageable level for implementation purposes. A matrix of trial runs conducted with the M-E design guide software suggests that a higher design level input does not necessarily guarantee a higher accuracy in predicting pavement performance. The software runs also confirmed the need to use input values obtained from local rather than national calibration. Such findings are important for state highway agencies such as INDOT in drafting initiatives for implementing the M-E design guide.


2007 ◽  
Vol 8 (3) ◽  
pp. 375-397 ◽  
Author(s):  
Sunghwan Kim ◽  
Halil Ceylan ◽  
Kasthurirangan Gopalakrishnan

2009 ◽  
Vol 135 (8) ◽  
pp. 555-562 ◽  
Author(s):  
Alper Guclu ◽  
Halil Ceylan ◽  
Kasthurirangan Gopalakrishnan ◽  
Sunghwan Kim

Author(s):  
Kevin D. Hall ◽  
Steven Beam

Many highway agencies use AASHTO methods for the design of pavement structures. Current AASHTO methods are based on empirical relationships between traffic loading, materials, and pavement performance developed from the AASHO Road Test (1958–1961). The applicability of these methods to modern-day conditions has been questioned; in addition, the lack of realistic inputs regarding environmental and other factors in pavement design has caused concern. Research sponsored by the NCHRP has resulted in the development of a mechanistic–empirical design guide (M-E design guide) for pavement structural analysis. The new M-E design guide requires more than 100 inputs to model traffic, environmental, material, and pavement performance to provide estimates of pavement distress over the design life of the pavement. Many designers may lack specific knowledge of the data required. A study was performed to assess the relative sensitivity of the models used in the M-E design guide to inputs relating to portland cement concrete materials in the analysis of jointed plain concrete pavements. Twenty-nine inputs were evaluated by analysis of a standard pavement section and change of the value of each input individually. The three pavement distress models (cracking, faulting, and roughness) were not sensitive to 17 of the 29 inputs. All three models were sensitive to six of the 29 inputs. Combinations of only one or two of the distress models were sensitive to six of the 29 inputs. These data may aid designers in focusing on inputs that have the most effect on desired pavement performance.


2003 ◽  
Vol 1855 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Weng On Tam ◽  
Harold Von Quintus

Traffic data are a key element for the design and analysis of pavement structures. Automatic vehicle-classification and weigh-in-motion (WIM) data are collected by most state highway agencies for various purposes that include pavement design. Equivalent single-axle loads have had widespread use for pavement design. However, procedures being developed under NCHRP require the use of axle-load spectra. The Long-Term Pavement Performance database contains a wealth of traffic data and was selected to develop traffic defaults in support of NCHRP 1-37A as well as other mechanistic-empirical design procedures. Automated vehicle-classification data were used to develop defaults that account for the distribution of truck volumes by class. Analyses also were conducted to determine direction and lane-distribution factors. WIM data were used to develop defaults to account for the axle-weight distributions and number of axles per vehicle for each truck type. The results of these analyses led to the establishment of traffic defaults for use in mechanistic-empirical design procedures.


2019 ◽  
Vol 46 (6) ◽  
pp. 501-510 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Damien Grellet ◽  
Guy Doré ◽  
Maurice Phénix

Agricultural field equipment are typically equipped with wide single tires with particular tire tread and low inflation working pressures. Because of the significant differences with standard truck tires, the effect of flotation implement tire on pavement performance and load associated damage is likely to differ. This paper presents the results of an experimental research project where flotation tires were used to test the response of an instrumented flexible pavement built in an indoor test pit. The effect of load, tire pressure, and tire type was investigated as part of the study. Based on the collected results, the tire type and design greatly influence the pavement response. The critical and governing pavement damage mechanism was found to be subgrade structural rutting. Wide specialty tires were found to generally induce less damage than standard truck tires. A method for axle weight adjustment for wide farm tires was proposed as part of the project.


Sign in / Sign up

Export Citation Format

Share Document