scholarly journals Pulsar Populations in the Galaxy and Magellanic Clouds

2010 ◽  
Author(s):  
Joshua P. Ridley
2010 ◽  
Vol 6 (S272) ◽  
pp. 233-241
Author(s):  
Christopher J. Evans

AbstractOne of the challenges for stellar astrophysics is to reach the point at which we can undertake reliable spectral synthesis of unresolved populations in young, star-forming galaxies at high redshift. Here I summarise recent studies of massive stars in the Galaxy and Magellanic Clouds, which span a range of metallicities commensurate with those in high-redshift systems, thus providing an excellent laboratory in which to study the role of environment on stellar evolution. I also give an overview of observations of luminous supergiants in external galaxies out to a remarkable 6.7 Mpc, in which we can exploit our understanding of stellar evolution to study the chemistry and dynamics of the host systems.


2008 ◽  
Vol 4 (S256) ◽  
pp. 325-336
Author(s):  
Christopher J. Evans

AbstractThe past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.


1983 ◽  
Vol 202 (1) ◽  
pp. 59-76 ◽  
Author(s):  
M. S. Bessell ◽  
P. R. Wood ◽  
T. Lloyd Evans

2000 ◽  
Vol 176 ◽  
pp. 157-160
Author(s):  
E. Antonello ◽  
L. Mantegazza ◽  
D. Fugazza ◽  
M. Bossi ◽  
S. Covino

AbstractA summary of the first results of a search for Cepheids in IC 1613 is reported along with a short discussion of the adopted technique, a comparison of the characteristics of Cepheid light curves in the Galaxy, Magellanic Clouds and IC 1613, and a possible application for a P–L relation derivation. First overtone Cepheids have been identified for the first time in a galaxy farther than the Magellanic Clouds.


1984 ◽  
Vol 108 ◽  
pp. 305-312
Author(s):  
J. B. Hutchings

In the Magellanic Clouds, about 75 candidate stellar X-ray sources have been detected. Most of these positions have now been investigated and optical identifications made for ~ 50%. The majority of sources are foreground dwarf stars or background active galaxies. Detailed investigations exist for 3 SMC sources and 6 LMC sources. It is possible to make a preliminary comparison with the population of galactic X-ray sources. The Magellanic Cloud X-ray binaries have a number of unique or remarkable properties and the most important ones are presented and discussed. These include the most rapid pulsars (SMC X-1, 0538–66), the possible precessing disk in LMC X-4, and the black hole candidates LMC X-3, LMC X-1. The properties of these objects relate to the evolution of stars in the Magellanic Clouds and how it differs from the Galaxy.


1991 ◽  
Vol 148 ◽  
pp. 89-95
Author(s):  
S. J. Meatheringham

The Small and Large Magellanic Clouds (SMC, LMC) are of considerable interest from a kinematical viewpoint. The tidal interation of the Clouds with each other and with the Galaxy appears to have been quite significant in recent times (Murai & Fujimoto 1980). The SMC in particular appears to have been considerably disrupted by a recent close passage to the LMC (Mathewson & Ford 1984, Mathewson 1984, Mathewson et al. 1986). For the LMC Freeman et al. (1983) found that the young and old populations have significantly different rotation solutions.Planetary Nebulae (PN) form a population with age intermediate between the HI and young clusters and the old Population II clusters. A large number of PN are known in the MCs. Sanduleak et al. (1978) compiled a list of 102 in the LMC and 28 in the SMC. Since then other authors have increased the total number known to approximately 140 in the LMC and 50 in the SMC.


1979 ◽  
Vol 47 ◽  
pp. 337-346 ◽  
Author(s):  
N. R. Walborn

AbstractThe importance of maintaining the greatest possible independence of spectral classification from theoretical or other external information is emphasized anew, with reference to some historical discussions now seen with the benefit of hindsight. This ideal requirement applies equally to the development and to the application of a classification system, although in practice some well-established information may guide one’s intuition in the initial hypothetical formulation. The fundamental position of this principle in the MK approach to classification is a major reason for the value of its spectral types, and for its continuing success in uncovering new phenomena. The ability of a particular technique to produce interesting or useful results is surely the most significant criterion of its value, and from this viewpoint it appears that new techniques and methods will complement rather than replace traditional spectral classification. Finally, the unique importance at this time of applying both new and traditional methods to spectral classification in the Magellanic Clouds is stressed; they provide the only current opportunity for detailed spectroscopic examination of numerous stars in external systems. It is essential that large telescopes be utilized for this work so that the best attainable observational quality may be maintained, and the many fascinating phenomena revealed by spectral classification in the Galaxy can be comparatively investigated to the maximum extent praticable in the Magellanic Clouds


1991 ◽  
Vol 148 ◽  
pp. 487-488
Author(s):  
G. X. Song

The disk of the Milky Way suffered from the tidal effect as the Magellanic Clouds were passing by. Numerical stimulations were performed to study the evolution of the mass distribution in this disk. These simulations were run with the galactic disk initially flat, and different sets of the initial position and velocity of the Magellanic Clouds were considered. One of the most conspicuous observational facts is the warp of the disk of the Milky Way. Results show that the characteristics of this warp are related to the orbit of the Magellanic Clouds.


Sign in / Sign up

Export Citation Format

Share Document