scholarly journals The effect of the Magellanic Clouds on the mass distribution in the galaxy

1991 ◽  
Vol 148 ◽  
pp. 487-488
Author(s):  
G. X. Song

The disk of the Milky Way suffered from the tidal effect as the Magellanic Clouds were passing by. Numerical stimulations were performed to study the evolution of the mass distribution in this disk. These simulations were run with the galactic disk initially flat, and different sets of the initial position and velocity of the Magellanic Clouds were considered. One of the most conspicuous observational facts is the warp of the disk of the Milky Way. Results show that the characteristics of this warp are related to the orbit of the Magellanic Clouds.

2011 ◽  
Vol 743 (1) ◽  
pp. 40 ◽  
Author(s):  
Michael T. Busha ◽  
Philip J. Marshall ◽  
Risa H. Wechsler ◽  
Anatoly Klypin ◽  
Joel Primack

1995 ◽  
Vol 164 ◽  
pp. 133-149
Author(s):  
Rosemary F.G. Wyse

The Milky Way Galaxy offers a unique opportunity for testing theories of galaxy formation and evolution. The study of the spatial distribution, kinematics and chemical abundances of stars in the Milky Way Galaxy allows one to address specific questions pertinent to this meeting such as (i)When was the Galaxy assembled? Is this an ongoing process? What was the merging history of the Milky Way?(ii)When did star formation occur in what is now “The Milky Way Galaxy”? Where did the star formation occur then? What was the stellar Initial Mass Function?(iii)How much dissipation of energy was there before and during the formation of the different stellar components of the Galaxy?(iv)What are the relationships among the different stellar components of the Galaxy?(v)Was angular momentum conserved during formation of the disk(s) of the Galaxy?(vi)What is the shape of the dark halo?(vii)Is there dissipative (disk) dark matter?


1993 ◽  
Vol 139 ◽  
pp. 192-200 ◽  
Author(s):  
S.M.G. Hughes

AbstractNew results (∼last two years) on mainly observational properties of Long Period Variables (LPVs) in the Magellanic Clouds and the Galaxy are reviewed. These properties include the effects of metallicity variations on their mass loss rates, the use of AGB LPVs to map the stellar distributions of the Galactic disk and bulge, and using detailed observations of nearby Miras to investigate their structure and to obtain new parallax distances, with implications for the pulsation mode of Miras.


1996 ◽  
Vol 171 ◽  
pp. 3-10
Author(s):  
K.C. Freeman

The accretion of small satellite galaxies appears to have been important in the formation of the metal-poor halo of the Galaxy. The disrupting Sgr dwarf galaxy and the recent discovery of a young, metal-poor component of the halo indicate that this is a continuing process. The evolution of the galactic disk, and some consequences of the bar-like nature of the galactic bulge are briefly discussed.


2013 ◽  
Vol 53 (A) ◽  
pp. 665-670
Author(s):  
Janusz Ziółkowski

In this review, I will briefly discuss the different types of black hole (BH) populations (supermassive, intermediate mass and stellar mass BHs) both in the Galaxy and in the Magellanic Clouds and compare them with each other.


2003 ◽  
Vol 208 ◽  
pp. 209-214
Author(s):  
Kathryn V. Johnston ◽  
David N. Spergel ◽  
Christian Haydn

Dwarf galaxies that fall into the Milky Way's potential are tidally disrupted. Their tidal tails are one of the most powerful probes of the mass distribution in the Galaxy. If the distribution of dark matter in the Galaxy is lumpy, then these lumps will scatter stars in the stream and alter its shape. We describe our approach to using the tidal debris to constrain substructure in the Galaxy halo.


1993 ◽  
Vol 153 ◽  
pp. 353-354
Author(s):  
I.V. Petrovskaya ◽  
S. Ninković

It is not always clear what the bulge of the Galaxy is: a region close to the centre, a subsystem formed by a distinct population, or a mixture of populations but characterised by its own mass distribution. We consider the bulge of the Milky Way as a subsystem and thus contributing to the galactic gravitation field. We want to estimate the contribution of the galactic bulge to the rotation curve.


1989 ◽  
Vol 106 ◽  
pp. 224-224
Author(s):  
Yu. L. Frantsman

Simulated populations of white dwarfs and N type carbon stars were generated for a Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and the luminosity distribution of carbon stars is discussed and the results are compared with observations. A significant mass loss by stars on the TP-AGB occurs besides regular stellar wind and planetary nebulae ejection. Thus it is possible to explain the luminosity functions of carbon and M stars in the Magellanic Clouds (with very few stars brighter than Mbol = -6.0), the very narrow mass distribution of white dwarfs, and the very small number of white dwarfs with M > 1.0 MΘ. The luminosity of some AGB stars in the SMC is so high that they may be supernova of type 1 1/2 precursors. There are no such stars in the LMC. Comparison of the theoretical and observed luminosity distributions of high-luminosity AGB stars in the Magellanic Clouds shows that the mass-loss rate of these stars in the LMC is about an order of magnitude larger than in the SMC. In the Galaxy carbon stars may form only from stars with initial mass less than 1.5 MΘ due to the relatively small initial heavy element abundance in these stars; this is perhaps the main reason for the absence of carbon stars in open clusters in the Galaxy.


2019 ◽  
Vol 14 (S351) ◽  
pp. 420-421
Author(s):  
Julio A. Carballo-Bello

AbstractIn recent years, we have gathered enough evidence showing that most of the Galactic globular clusters extend well beyond their King tidal radii and fill their Jacobi radii in the form of “extended stellar haloes”. In some cases, because of the interaction with the Milky Way, stars are able to exceed the Jacobi radius, generating tidal tails which may be used to trace the mass distribution in the Galaxy. In this work, we use the precious information provided by the space mission Gaia (photometry, parallaxes and proper motions) to analyze NGC 362 in the search for member stars in its surroundings. Our preliminar results suggest that it is possible to identify member stars and tidal features up to distances of a few degrees from the globular cluster center.


2009 ◽  
Vol 5 (S265) ◽  
pp. 304-312
Author(s):  
Carlos Allende Prieto

AbstractWe discuss recent observations of stars located close to the symmetry plane of the Milky Way, and examine them in the context of theories of Galaxy formation and evolution. The kinematics, ages, and compositions of thin disk stars in the solar neighborhood display complex patterns, and interesting correlations. The Galactic disk does not seem to pose any unsurmountable obstacles to hierarchical galaxy formation theories, but a model of the Milky Way able to reproduce the complexity found in the data will likely require a meticulous study of a significant fraction of the stars in the Galaxy. Making such an observational effort seems necessary in order to make a physics laboratory out of our own galaxy, and ultimately ensure that the most relevant processes are properly understood.


Sign in / Sign up

Export Citation Format

Share Document