Immunological features of chronic endometritis

2022 ◽  
pp. 62-65
Author(s):  
Yuriy Aleksandrovich Sorokin ◽  

Chronic endometritis is a clinical and morphological syndrome with a complex of morphological and functional changes in the endometrium, leading to a violation of the physiological cyclic transformation and receptivity of endometrial tissues. The treatment of chronic endometritis requires special consideration. Despite the progress of pharmacotherapy, there are significant methodological and practical difficulties. Cavitated solutions, low-intensity ultrasound effects, and photochromotherapy increase the effectiveness of the treatment of chronic endometritis and female infertility.

Measurement ◽  
2021 ◽  
Vol 167 ◽  
pp. 108280
Author(s):  
Zeinab Hormozi-Moghaddam ◽  
Manijhe Mokhtari-Dizaji ◽  
Mohammad-Ali Nilforoshzadeh ◽  
Mohsen Bakhshandeh

2019 ◽  
Vol 19 (06) ◽  
pp. 1950057
Author(s):  
MARIANTONIETTA IVONE ◽  
LUCIANO LAMBERTI ◽  
CARMINE PAPPALETTERE ◽  
MARIANO FRANCESCO CARATOZZOLO ◽  
APOLLONIA TULLO

The low-intensity ultrasound effects on MCF7 (human breast adenocarcinoma) and MCF10A (healthy breast cells) have been investigated at different sonication protocol to probe the effectiveness and the selectivity of the ultrasound (US) treatment and to understand the implications between cell mortality, biomechanical interactions and cell elastic modulus. Experiments performed at fixed and variable frequency demonstrated the effectiveness of some protocols in killing carcinogenic cells and the healthy cells insensitivity. Variation of elastic properties of MCF7 cells exposed to US under varying sonication conditions was examined. Sonication was carried out at fixed frequency (as it is usually done in therapy protocols), between 400[Formula: see text]kHz and 620[Formula: see text]kHz, following two protocols: (i) at fixed power output; (ii) at fixed voltage of the US generator. Evolution of cell stiffness during the US treatment was monitored via atomic force spectroscopy (AFS). It was found that cell mortality has a similar trend of variation with respect to sonication frequency regardless of the way specimens are exposed to US. Mechanical properties do not show a uniform trend with respect to frequency, but variations of Young’s modulus are more marked near the very low (400–480) kHz or very high frequencies (580–620) kHz. The observed variations may be related to mechanical interactions occurring in the cell culture, suggesting a primacy of the environment on other factors.


1998 ◽  
Vol 355S ◽  
pp. S216-S229 ◽  
Author(s):  
Michael Hadjiargyrou ◽  
Kenneth McLeod ◽  
John P. Ryaby ◽  
Clinton Rubin

2017 ◽  
Vol 36 (8) ◽  
pp. 1693-1706
Author(s):  
Ailing Teo ◽  
Amir Morshedi ◽  
Jen-Chieh Wang ◽  
Yufeng Zhou ◽  
Mayasari Lim

2010 ◽  
Vol 18 (5) ◽  
pp. 724-733 ◽  
Author(s):  
I. Gurkan ◽  
A. Ranganathan ◽  
X. Yang ◽  
W.E. Horton ◽  
M. Todman ◽  
...  

Author(s):  
Binika Hada ◽  
Mrigendra Bir Karmacharya ◽  
So R. Park ◽  
Byung H. Choi

AbstractBackground: We have previously shown that low-intensity ultrasound (LIUS), a noninvasive mechanical stimulus, inhibits brain edema formation induced by oxygen and glucose deprivation (OGD) or treatment with glutamate, a mediator of OGD-induced edema, in acute rat hippocampal slice model in vitro. Methods: In this study, we treated the rat hippocampal slices with N-methyl-d-aspartic acid (NMDA) or (S)-3,5-dihydroxyphenylglycine (DHPG) to determine whether these different glutamate receptor agonists induce edema. The hippocampal slices were then either sonicated with LIUS or treated with N-methyl-d-aspartic acid receptor (NMDAR) antagonists, namely, MK-801 and ketamine, and observed their effects on edema formation. Results: We observed that treatment with NMDA, an agonist of ionotropic glutamate receptors, induced brain edema at similar degrees compared with that induced by OGD. However, treatment with DHPG, an agonist of metabotropic glutamate receptors, did not significantly induce brain edema. Treatment with the NMDAR antagonists MK-801 or ketamine efficiently prevented brain edema formation by both OGD and NMDA in a concentration-dependent manner. N-Methyl-d-aspartic acid-induced brain edema was alleviated by LIUS in an intensity-dependent manner when ultrasound was administered at 30, 50, or 100 mW/cm2 for 20 minutes before the induction of the edema. Furthermore, LIUS reduced OGD- and NMDA-induced phosphorylation of NMDARs at Y1325. Conclusion: These results suggest that LIUS can inhibit OGD- or NMDA-induced NMDAR activation by preventing NMDAR phosphorylation, thereby reducing a subsequent brain edema formation. The mechanisms by which LIUS inhibits NMDAR phosphorylation need further investigation.


Sign in / Sign up

Export Citation Format

Share Document