scholarly journals UNA VERSIÓN LINEAL DEL PROBLEMA DE KURATOWSKI

Author(s):  
Ismael Cohen ◽  
Giovanni Wences ◽  
Jorge Rodriguez Contreras ◽  
Alberto Mario Reyes Linero ◽  
Rafael Segundo Sanchez Anillo

  El presente estudio se enmarca dentro del paradigma de la investigación básica matemática. Nuestro trabajo está orientado hacia el planteamiento de una nueva versión conceptual y la construcción de una prueba formal del reconocido problema de clausura-complemento de Kuratowski en el marco de la teoría de los espacios vectoriales.   Palabras clave: Espacios vectoriales, Problema de Kuratowski, problema de cerradura y complemento.   Abstract This study is framed into the basic mathematics research paradigm. This work is geared towards the statement of a new conceptual version and to the construction of a formal proof of the well-known Kuratowski closure-complement problem in the vector space theory frame.   Keywords: Kuratowski’s problem, Vector spaces, Closure-complement problem   Resumo O presente estudo está enquadrado no paradigma da pesquisa matemática básica. Este trabalho está voltado para afirmação de uma nova versão conceitual e para a construção de uma prova formal do bem conhecido problema de complemento de roupas de Kuratowski no quadro da teoria linear do espaço.   Palavras chave: Problema de Kuratowski, Espaços vetoriais, Problema de fechamento-complemento  

2017 ◽  
Vol 22 (2) ◽  
pp. 31
Author(s):  
Héctor Carlos Guimaray Huerta

La matemática ha desarrollado, haciendo uso de axiomas, espacios matemáticos como espacios vectoriales, normados, métricos, topológicos, etc. El objetivo principal en este artículo es definir un espacio en el que las propiedades de un conjunto sean las mismas en los espacios mencionados anteriormente, para lo cual se considera una función conjunto a conjunto llamada función definida. Palabras clave.- Espacio vectorial, Espacio topológico, Conjunto definido, Cápsula definida. ABSTRACTMathematics has been developed, using axioms, mathematical spaces as vector spaces, normed, metric, topological and so on. The primary objective in this article is to define a space in which the properties of a set are the same in the spaces above, for which is considered a function set to set called defined function. Keywords.- Vector space, Topological space, Defined set, Defined hull.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1118
Author(s):  
Faisal Mehmood ◽  
Fu-Gui Shi

The generalization of binary operation in the classical algebra to fuzzy binary operation is an important development in the field of fuzzy algebra. The paper proposes a new generalization of vector spaces over field, which is called M-hazy vector spaces over M-hazy field. Some fundamental properties of M-hazy field, M-hazy vector spaces, and M-hazy subspaces are studied, and some important results are also proved. Furthermore, the linear transformation of M-hazy vector spaces is studied and their important results are also proved. Finally, it is shown that M-fuzzifying convex spaces are induced by an M-hazy subspace of M-hazy vector space.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


1998 ◽  
Vol 57 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Rachel Thomas

In this paper we consider the characterisation of those elements of a transformation semigroup S which are a product of two proper idempotents. We give a characterisation where S is the endomorphism monoid of a strong independence algebra A, and apply this to the cases where A is an arbitrary set and where A is an arbitrary vector space. The results emphasise the analogy between the idempotent generated subsemigroups of the full transformation semigroup of a set and of the semigroup of linear transformations from a vector space to itself.


2016 ◽  
Vol 101 (2) ◽  
pp. 277-287
Author(s):  
AARON TIKUISIS

It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


Author(s):  
Oleg Reinov ◽  
Asfand Fahad

The notions of V-dentability, V-s-dentability and V-f-dentability are introduced. It is shown, in particular, that if B is a bounded sequentially complete convex metrizable subset of a locally convex vector space E and V is a neighborhood of zero in E, then the following are equivalent: 1). B is subset V-dentable; 2). B is subset V-s-dentable; 3). B is subset V-f-dentable. It follows from this that for a wide class of locally convex vector spaces E, which strictly contains the class of (BM) spaces (introduced by Elias Saab in 1978), the following is true: every closed bounded subset of E is dentable if and only if every closed bounded subset of E is f-dentable. Also, we get a positive answer to the Saab's question (1978) of whether the subset dentability and the subset s-dentability are the same forthe bounded complete convex metrizable subsets of any l.c.v. space.


2020 ◽  
Vol 19 ◽  

The purpose of the present paper is to introduce the new class of ω b - topological vector spaces. We study several basic and fundamental properties of ω b - topological and investigate their relationships with certain existing spaces. Along with other results, we prove that transformation of an open (resp. closed) set in aω b - topological vector space is ω b - open (resp. closed). In addition, some important and useful characterizations of ω b - topological vector spaces are established. We also introduce the notion of almost ω b - topological vector spaces and present several general properties of almost ω b - topological vector spaces.


2021 ◽  
Vol 7 ◽  
pp. 20-36
Author(s):  
Raja Mohammad Latif

In 2016 A. Devika and A. Thilagavathi introduced a new class of sets called M*-open sets and investigated some properties of these sets in topological spaces. In this paper, we introduce and study a new class of spaces, namely M*-irresolute topological vector spaces via M*-open sets. We explore and investigate several properties and characterizations of this new notion of M*-irresolute topological vector space. We give several characterizations of M*-Hausdorff space. Moreover, we show that the extreme point of the convex subset of M*-irresolute topological vector space X lies on the boundary.


Sign in / Sign up

Export Citation Format

Share Document