Noise source analysis and control of two axial-flow cooling fans in series

2016 ◽  
Vol 64 (5) ◽  
pp. 677-687 ◽  
Author(s):  
Chen Wang ◽  
Weihao Zhang ◽  
Lixi Huang
2013 ◽  
Vol 738 ◽  
pp. 191-194
Author(s):  
Huan Liu ◽  
Han Cui

The noise of blower room severity exceeds national standards,which affects normal performance of the new pharmaceutical factory,so it is necessary us to control noise. Based on the measured dates of blowers room, it carries out a noise source analysis and a discus of its noise characteristic in this article, then a controlling approach has found from absorbing noise, excluding noise to blockade sound transmission. When the controlling approach could not meet expect, a supplement program will be designed that vibration isolators will be installed under the basement of electric engine and blower, flexible metal tubes will be installed to isolate vibration spread path. After a set utility controlling approach is implemented, the consequence shows that program not only gains good effects but also caters to more advanced criterion of manufacturers demand.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4618
Author(s):  
Antonio Mariani ◽  
Gaetano Crispino ◽  
Pasquale Contestabile ◽  
Furio Cascetta ◽  
Corrado Gisonni ◽  
...  

Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex process due to the very low head and a variable flow rate in the overtopping breakwater set-ups. Based on the experience acquired on the first Overtopping BReakwater for Energy Conversion (OBREC) prototype, operating since 2016, an activity has been carried out to select the most appropriate turbine dimension and control strategy for such applications. An example of this multivariable approach is provided and illustrated through a case study in the San Antonio Port, along the central coast of Chile. In this site the deployment of a breakwater equipped with OBREC modules is specifically investigated. Axial-flow turbines of different runner diameter are compared, proposing the optimal ramp height and turbine control strategy for maximizing system energy production. The energy production ranges from 20.5 MWh/y for the smallest runner diameter to a maximum of 34.8 MWh/y for the largest runner diameter.


1997 ◽  
Vol 119 (1) ◽  
pp. 52-59 ◽  
Author(s):  
M. J. Panza ◽  
D. P. McGuire ◽  
P. J. Jones

An integrated mathematical model for the dynamics, actuation, and control of an active fluid/elastomeric tuned vibration isolator in a two mass system is presented. The derivation is based on the application of physical principles for mechanics, fluid continuity, and electromagnetic circuits. Improvement of the passive isolator performance is obtained with a feedback scheme consisting of a frequency shaped notch compensator in series with integral control of output acceleration and combined with proportional control of the fluid pressure in the isolator. The control is applied via an electromagnetic actuator for excitation of the fluid in the track connecting the two pressure chambers of the isolator. Closed loop system equations are transformed to a nondimensional state space representation and a key dimensionless parameter for isolator-actuator interaction is defined. A numerical example is presented to show the effect of actuator parameter selection on system damping, the performance improvement of the active over the passive isolator, the robustness of the control scheme to parameter variation, and the electrical power requirements for the actuator.


Author(s):  
Pingen Chen ◽  
Qinghua Lin

The configuration and control of aftertreatment systems have a significant impact on their functionalities and emission control performance. The traditional aftertreatment system configurations, i.e., connections from one aftertreatment subsystem to another subsystem in series, are simple but generally do not yield the optimal aftertreatment system performance. New aftertreatment configurations, in conjunction with new engine and aftertreatment control, can significantly improve engine efficiency and emission reduction performance. However, new configuration design requires human intuition and in-depth knowledge of engine and aftertreatment system design and control. The purpose of this study is to develop a general systematic and computationally-efficient method which enables automated and simultaneous optimization of passive selective catalytic reduction (SCR) system architectures and the associated non-uniform cylinder-to-cylinder combustion (NUCCC) controls based on a newly proposed highly reconfigurable passive SCR model structure and integer partition theory. The proposed method is general enough to account for passive SCR systems with two or more TWC stages. We demonstrate through this case study that the optimized passive SCR configuration, in conjunction with the optimized NUCCC control, can reduce the NH3 specific fuel consumption by up to 21.90%.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Qiang Jiaxi ◽  
Yang Lin ◽  
He Jianhui ◽  
Zhou Qisheng

Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.


Author(s):  
Henri A. Siller ◽  
Alessandro Bassetti ◽  
Stefan Funke

Author(s):  
Michael J. Panza ◽  
Dennis P. McGuire ◽  
Peter J. Jones

Abstract An integrated mathematical model for the dynamics, actuation, and control of an active fluid/elastomeric tuned vibration isolator in a two mass system is presented. The derivation is based on the application of physical principles for mechanics, fluid continuity, and electromagnetic circuits. Improvement of the passive isolator performance is obtained with a feedback scheme consisting of a frequency shaped notch compensator in series with integral control of output acceleration and combined with proportional control of the fluid pressure in the isolator. The control is applied via an electromagnetic actuator for excitation of the fluid in the track connecting the two pressure chambers of the isolator. Closed loop system equations are transformed to a nondimensional state space representation and a key dimensionless parameter for isolator-actuator interaction is defined. A numerical example is presented to show the effect of actuator parameter selection on system damping, the performance improvement of the active over the passive isolator, the robustness of the control scheme to parameter variation, and the electrical power requirements for the actuator.


Sign in / Sign up

Export Citation Format

Share Document