Spatial release from masking in varying spatial acoustic under higher order ambisonic-based sound reproduction system

2021 ◽  
Vol 263 (4) ◽  
pp. 2476-2485
Author(s):  
C. T. Justine Hui ◽  
Yusuke Hioka ◽  
Catherine I. Watson ◽  
Hinako Masuda

A previous study found that spatial release from masking (SRM) could be observed under virtual reverberant environments using a first order Ambisonic-based sound reproduction system, however, poor localisation accuracy made it difficult to examine effect of varying reverberation time on SRM. The present study follows on using higher order Ambisonics (HOA) to examine how benefits from SRM vary in different spatial acoustics. Subjective speech intelligibility was measured where four room acoustics:reverberation time (RT)= 0.7 s (clarity (C50)= 16 dB, 7 dB); RT= 1.8 s (C50= 8 dB, 2 dB) were simulated via a third order Ambisonic system with a 16 channel spherical loudspeaker array. The masker was played from 8 azimuthal angles (0, +-45, +-90, +-135, 180 degrees) while the target speech was played from 0 degree. The listeners are deemed to benefit from SRM if their intelligibility scores were higher when the masker comes from a different angle than that of the target. We found while listeners could benefit from SRM at C50 = 16 dB and 8 dB, the benefit starts to diminish at C50 = 7 dB, and listeners could no longer benefit from SRM at C50 = 2 dB.

2021 ◽  
Vol 184 ◽  
pp. 108368
Author(s):  
C. T. Justine Hui ◽  
Eugena Au ◽  
Shirley Xiao ◽  
Yusuke Hioka ◽  
Hinako Masuda ◽  
...  

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Xiongtao Cao ◽  
Hongxing Hua

Vibroacoustic characteristics of multidirectional stiffened laminated plates with or without compliant layers are explored in the wavenumber and spatial domains with the help of the two-dimensional continuous Fourier transform and discrete inverse fast Fourier transform. Implicit equations of motion for the arbitrary angle ply laminated plates are derived from the three-dimensional higher order and Reddy third order shear deformation plate theories. The expressions of acoustic power of the stiffened laminated plates with or without complaint layers are formulated in the wavenumber domain, which is a significant method to calculate acoustic power of the stiffened plates with multiple sets of cross stiffeners. Vibroacoustic comparisons of the stiffened laminated plates are made in terms of the transverse displacement spectra, forced responses, acoustic power, and input power according to the first order, Reddy third order, and three-dimensional higher order plate theories. Sound reduction profiles of compliant layers are further examined by the theoretical deductions. This study shows the feasibility and high efficiency of the first order and Reddy third order plate theories in the broad frequency range and allows a better understanding the principal mechanisms of acoustic power radiated from multidirectional stiffened laminated composite plates with compliant layers, which has not been adequately addressed in its companion paper. (Cao and Hua, 2012, “Sound Radiation From Shear Deformable Stiffened Laminated Plates With Multiple Compliant Layers,” ASME J. Vib. Acoust., 134(5), p. 051001.)


1982 ◽  
Vol 37 (11) ◽  
pp. 1295-1300 ◽  
Author(s):  
H. Stumpf

In preceding papers a lepton-hadron unified field model was introduced by means of a third order nonlinear spinorfield equation. In this paper an improved interpretation to this model is given which tries to incorporate the advantages of various current matter models and to avoid their drawbacks. In particular charge and lepton number are introduced, while the extended unstable baryon states are distinguished from lepton states by an intrinsic parity. A theorem is derived which allows a biunique decomposition of the nonlinear higher order spinorfield equation into nonlinear first order spinorfield equations and the simultaneous introduction of a permutation group of the subfields. These subfields are identified as pseudo-color fields.


2017 ◽  
Vol 26 (4) ◽  
pp. 507-518 ◽  
Author(s):  
Kasey M. Jakien ◽  
Sean D. Kampel ◽  
Meghan M. Stansell ◽  
Frederick J. Gallun

Purpose To evaluate the test–retest reliability of a headphone-based spatial release from a masking task with two maskers (referred to here as the SR2) and to describe its relationship to the same test done over loudspeakers in an anechoic chamber (the SR2A). We explore what thresholds tell us about certain populations (such as older individuals or individuals with hearing impairment) and discuss how the SR2 might be useful in the clinic. Method Fifty-four participants completed speech intelligibility tests in which a target phrase and two masking phrases from the Coordinate Response Measure corpus (Bolia, Nelson, Ericson, & Simpson, 2000) were presented either via earphones using a virtual spatial array or via loudspeakers in an anechoic chamber. For the SR2, the target sentence was always at 0° azimuth angle, and the maskers were either colocated at 0° or positioned at ± 45°. For the SR2A, the target was located at 0°, and the maskers were colocated or located at ± 15°, ± 30°, ± 45°, ± 90°, or ± 135°. Spatial release from masking was determined as the difference between thresholds in the colocated condition and each spatially separated condition. All participants completed the SR2 at least twice, and 29 of the individuals who completed the SR2 at least twice also participated in the SR2A. In a second experiment, 40 participants completed the SR2 8 times, and the changes in performance were evaluated as a function of test repetition. Results Mean thresholds were slightly better on the SR2 after the first repetition but were consistent across 8 subsequent testing sessions. Performance was consistent for the SR2A, regardless of the number of times testing was repeated. The SR2, which simulates 45° separations of target and maskers, produced spatially separated thresholds that were similar to thresholds obtained with 30° of separation in the anechoic chamber. Over headphones and in the anechoic chamber, pure-tone average was a strong predictor of spatial release, whereas age only reached significance for colocated conditions. Conclusions The SR2 is a reliable and effective method of testing spatial release from masking, suitable for screening abnormal listening abilities and for tracking rehabilitation over time. Future work should focus on developing and validating rapid, automated testing to identify the ability of listeners to benefit from high-frequency amplification, smaller spatial separations, and larger spectral differences among talkers.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. T47-T56 ◽  
Author(s):  
Songting Luo ◽  
Jianliang Qian ◽  
Hongkai Zhao

In the geometrical-optics approximation for the Helmholtz equation with a point source, traveltimes and amplitudes have upwind singularities at the point source. Hence, both first-order and higher-order finite-difference solvers exhibit formally at most first-order convergence and relatively large errors. Such singularities can be factored out by factorizing traveltimes and amplitudes, where one factor is specified to capture the corresponding source singularity and the other factor is an unknown function smooth near the source. The resulting underlying unknown functions satisfy factored eikonal and transport equations, respectively. A third-order Lax-Friedrichs scheme is designed to compute the underlying functions. Thus, highly accurate first-arrival traveltimes and reliable amplitudes can be computed. Furthermore, asymptotic wavefields are constructed using computed traveltimes and amplitudes in the WKBJ form. Two-dimensional and 3D examples demonstrate the performance of the proposed algorithms, and the constructed WKBJ Green’s functions are in good agreement with direct solutions of the Helmholtz equation before caustics occur.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1421-1427 ◽  
Author(s):  
ANIRBAN PATHAK

Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.


Sign in / Sign up

Export Citation Format

Share Document