On Some Physical Properties of a Unified Lepton-Hadron Field Model with Composte Bosons

1982 ◽  
Vol 37 (11) ◽  
pp. 1295-1300 ◽  
Author(s):  
H. Stumpf

In preceding papers a lepton-hadron unified field model was introduced by means of a third order nonlinear spinorfield equation. In this paper an improved interpretation to this model is given which tries to incorporate the advantages of various current matter models and to avoid their drawbacks. In particular charge and lepton number are introduced, while the extended unstable baryon states are distinguished from lepton states by an intrinsic parity. A theorem is derived which allows a biunique decomposition of the nonlinear higher order spinorfield equation into nonlinear first order spinorfield equations and the simultaneous introduction of a permutation group of the subfields. These subfields are identified as pseudo-color fields.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Xiongtao Cao ◽  
Hongxing Hua

Vibroacoustic characteristics of multidirectional stiffened laminated plates with or without compliant layers are explored in the wavenumber and spatial domains with the help of the two-dimensional continuous Fourier transform and discrete inverse fast Fourier transform. Implicit equations of motion for the arbitrary angle ply laminated plates are derived from the three-dimensional higher order and Reddy third order shear deformation plate theories. The expressions of acoustic power of the stiffened laminated plates with or without complaint layers are formulated in the wavenumber domain, which is a significant method to calculate acoustic power of the stiffened plates with multiple sets of cross stiffeners. Vibroacoustic comparisons of the stiffened laminated plates are made in terms of the transverse displacement spectra, forced responses, acoustic power, and input power according to the first order, Reddy third order, and three-dimensional higher order plate theories. Sound reduction profiles of compliant layers are further examined by the theoretical deductions. This study shows the feasibility and high efficiency of the first order and Reddy third order plate theories in the broad frequency range and allows a better understanding the principal mechanisms of acoustic power radiated from multidirectional stiffened laminated composite plates with compliant layers, which has not been adequately addressed in its companion paper. (Cao and Hua, 2012, “Sound Radiation From Shear Deformable Stiffened Laminated Plates With Multiple Compliant Layers,” ASME J. Vib. Acoust., 134(5), p. 051001.)


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. T47-T56 ◽  
Author(s):  
Songting Luo ◽  
Jianliang Qian ◽  
Hongkai Zhao

In the geometrical-optics approximation for the Helmholtz equation with a point source, traveltimes and amplitudes have upwind singularities at the point source. Hence, both first-order and higher-order finite-difference solvers exhibit formally at most first-order convergence and relatively large errors. Such singularities can be factored out by factorizing traveltimes and amplitudes, where one factor is specified to capture the corresponding source singularity and the other factor is an unknown function smooth near the source. The resulting underlying unknown functions satisfy factored eikonal and transport equations, respectively. A third-order Lax-Friedrichs scheme is designed to compute the underlying functions. Thus, highly accurate first-arrival traveltimes and reliable amplitudes can be computed. Furthermore, asymptotic wavefields are constructed using computed traveltimes and amplitudes in the WKBJ form. Two-dimensional and 3D examples demonstrate the performance of the proposed algorithms, and the constructed WKBJ Green’s functions are in good agreement with direct solutions of the Helmholtz equation before caustics occur.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1421-1427 ◽  
Author(s):  
ANIRBAN PATHAK

Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.


Author(s):  
Arto Laitinen

This paper critically examines Christopher Zurn’s suggestion mentioned above that various social pathologies (pathologies of ideological recognition, maldistribution, invisibilization, rationality distortions, reification and institutionally forced self-realization) share the structure of being ‘second-order disorders’: that is, that they each entail ‘constitutive disconnects between first-order contents and secondorder reflexive comprehension of those contents, where those disconnects are pervasive and socially caused’ (Zurn, 2011, 345-346). The paper argues that the cases even as discussed by Zurn do not actually match that characterization, but that it would be premature to conclude that they are not thereby social pathologies, or that they do not have a structure in common. It is just that the structure is more complex than originally described, covering pervasive socially caused evils (i) in the social reality, (ii) in the first order experiences and understandings, (iii) in the second order reflection as discussed by Zurn, and also (iv) in the ‘third order’ phenomenon concerning the pre-emptive silencing or nullification of social criticism even before it takes place 


Author(s):  
Shaughan Lavine

In first-order predicate logic there are symbols for fixed individuals, relations and functions on a given universe of individuals and there are variables ranging over the individuals, with associated quantifiers. Second-order logic adds variables ranging over relations and functions on the universe of individuals, and associated quantifiers, which are called second-order variables and quantifiers. Sometimes one also adds symbols for fixed higher-order relations and functions among and on the relations, functions and individuals of the original universe. One can add third-order variables ranging over relations and functions among and on the relations, functions and individuals on the universe, with associated quantifiers, and so on, to yield logics of even higher order. It is usual to use proof systems for higher-order logics (that is, logics beyond first-order) that include analogues of the first-order quantifier rules for all quantifiers. An extensional n-ary relation variable in effect ranges over arbitrary sets of n-tuples of members of the universe. (Functions are omitted here for simplicity: remarks about them parallel those for relations.) If the set of sets of n-tuples of members of a universe is fully determined once the universe itself is given, then the truth-values of sentences involving second-order quantifiers are determined in a structure like the ones used for first-order logic. However, if the notion of the set of all sets of n-tuples of members of a universe is specified in terms of some theory about sets or relations, then the universe of a structure must be supplemented by specifications of the domains of the various higher-order variables. No matter what theory one adopts, there are infinitely many choices for such domains compatible with the theory over any infinite universe. This casts doubt on the apparent clarity of the notion of ‘all n-ary relations on a domain’: since the notion cannot be defined categorically in terms of the domain using any theory whatsoever, how could it be well-determined?


Author(s):  
Joppe W. Bos ◽  
Marc Gourjon ◽  
Joost Renes ◽  
Tobias Schneider ◽  
Christine Van Vredendaal

In the final phase of the post-quantum cryptography standardization effort, the focus has been extended to include the side-channel resistance of the candidates. While some schemes have been already extensively analyzed in this regard, there is no such study yet of the finalist Kyber.In this work, we demonstrate the first completely masked implementation of Kyber which is protected against first- and higher-order attacks. To the best of our knowledge, this results in the first higher-order masked implementation of any post-quantum secure key encapsulation mechanism algorithm. This is realized by introducing two new techniques. First, we propose a higher-order algorithm for the one-bit compression operation. This is based on a masked bit-sliced binary-search that can be applied to prime moduli. Second, we propose a technique which enables one to compare uncompressed masked polynomials with compressed public polynomials. This avoids the costly masking of the ciphertext compression while being able to be instantiated at arbitrary orders.We show performance results for first-, second- and third-order protected implementations on the Arm Cortex-M0+ and Cortex-M4F. Notably, our implementation of first-order masked Kyber decapsulation requires 3.1 million cycles on the Cortex-M4F. This is a factor 3.5 overhead compared to the unprotected optimized implementationin pqm4. We experimentally show that the first-order implementation of our new modules on the Cortex-M0+ is hardened against attacks using 100 000 traces and mechanically verify the security in a fine-grained leakage model using the verification tool scVerif.


Author(s):  
Mohammed K. Elboree

Abstract Based on the Hirota bilinear form for the (3 + 1)-dimensional Jimbo–Miwa equation, we constructed the first-order, second-order, third-order and fourth-order rogue waves for this equation using the symbolic computation approach. Also some properties of the higher-order rogue waves and their interaction are explained by some figures via some special choices of the parameters.


2000 ◽  
Vol 417 ◽  
pp. 1-45 ◽  
Author(s):  
YASUHIDE FUKUMOTO ◽  
H. K. MOFFATT

A large-Reynolds-number asymptotic solution of the Navier–Stokes equations is sought for the motion of an axisymmetric vortex ring of small cross-section embedded in a viscous incompressible fluid. In order to take account of the influence of elliptical deformation of the core due to the self-induced strain, the method of matched of matched asymptotic expansions is extended to a higher order in a small parameter ε = (v/Γ)1/2, where v is the kinematic viscosity of fluid and Γ is the circulation. Alternatively, ε is regarded as a measure of the ratio of the core radius to the ring radius, and our scheme is applicable also to the steady inviscid dynamics.We establish a general formula for the translation speed of the ring valid up to third order in ε. This is a natural extension of Fraenkel–Saffman's first-order formula, and reduces, if specialized to a particular distribution of vorticity in an inviscid fluid, to Dyson's third-order formula. Moreover, it is demonstrated, for a ring starting from an infinitely thin circular loop of radius R0, that viscosity acts, at third order, to expand the circles of stagnation points of radii Rs(t) and R˜s(t) relative to the laboratory frame and a comoving frame respectively, and that of peak vorticity of radius R˜p(t) as Rs ≈ R0 + [2 log(4R0/√vt) + 1.4743424] vt/R0, R˜s ≈ R0 + 2.5902739 vt/R0, and Rp ≈ R0 + 4.5902739 vt/R0. The growth of the radial centroid of vorticity, linear in time, is also deduced. The results are compatible with the experimental results of Sallet & Widmayer (1974) and Weigand & Gharib (1997).The procedure of pursuing the higher-order asymptotics provides a clear picture of the dynamics of a curved vortex tube; a vortex ring may be locally regarded as a line of dipoles along the core centreline, with their axes in the propagating direction, subjected to the self-induced flow field. The strength of the dipole depends not only on the curvature but also on the location of the core centre, and therefore should be specified at the initial instant. This specification removes an indeterminacy of the first-order theory. We derive a new asymptotic development of the Biot-Savart law for an arbitrary distribution of vorticity, which makes the non-local induction velocity from the dipoles calculable at third order.


2021 ◽  
Vol 263 (4) ◽  
pp. 2476-2485
Author(s):  
C. T. Justine Hui ◽  
Yusuke Hioka ◽  
Catherine I. Watson ◽  
Hinako Masuda

A previous study found that spatial release from masking (SRM) could be observed under virtual reverberant environments using a first order Ambisonic-based sound reproduction system, however, poor localisation accuracy made it difficult to examine effect of varying reverberation time on SRM. The present study follows on using higher order Ambisonics (HOA) to examine how benefits from SRM vary in different spatial acoustics. Subjective speech intelligibility was measured where four room acoustics:reverberation time (RT)= 0.7 s (clarity (C50)= 16 dB, 7 dB); RT= 1.8 s (C50= 8 dB, 2 dB) were simulated via a third order Ambisonic system with a 16 channel spherical loudspeaker array. The masker was played from 8 azimuthal angles (0, +-45, +-90, +-135, 180 degrees) while the target speech was played from 0 degree. The listeners are deemed to benefit from SRM if their intelligibility scores were higher when the masker comes from a different angle than that of the target. We found while listeners could benefit from SRM at C50 = 16 dB and 8 dB, the benefit starts to diminish at C50 = 7 dB, and listeners could no longer benefit from SRM at C50 = 2 dB.


2013 ◽  
Vol 23 (01) ◽  
pp. 1350005 ◽  
Author(s):  
PEI YU ◽  
MAOAN HAN

In this paper, we show that generic planar quadratic Hamiltonian systems with third degree polynomial perturbation can have eight small-amplitude limit cycles around a center. We use higher-order focus value computation to prove this result, which is equivalent to the computation of higher-order Melnikov functions. Previous results have shown, based on first-order and higher-order Melnikov functions, that planar quadratic Hamiltonian systems with third degree polynomial perturbation can have five or seven small-amplitude limit cycles around a center. The result given in this paper is a further improvement.


Sign in / Sign up

Export Citation Format

Share Document