Fluxes of undissociated acids to terrestrial ecosystems by atmospheric deposition

Tellus B ◽  
1989 ◽  
Vol 41 (3) ◽  
Author(s):  
D. A. Schaefer ◽  
S. E. Lindberg ◽  
W. A. Hoffman
2015 ◽  
Vol 12 (5) ◽  
pp. 4315-4330 ◽  
Author(s):  
C. Mulder ◽  
J.-P. Hettelingh ◽  
L. Montanarella ◽  
M. R. Pasimeni ◽  
M. Posch ◽  
...  

Abstract. Long-term human interactions with landscape and nature produced a plethora of trends and patterns of environmental disturbances in time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main pollution drivers, affecting both freshwater as terrestrial ecosystems. We investigated the geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon to nitrogen ratios over Europe. After the Second Industrial Revolution (1880–2010), large landscape stretches characterized by different atmospheric deposition caused either by industrialized areas or by intensive agriculture emerged. Nitrogen deposition affects in a still recognizable way recent soil C : N ratios despite the emission abatement of oxidized and reduced nitrogen during the last two decades. Given the seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing evidence for a rapid response of nature to chronic nitrogen supply by atmospheric deposition.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter S. Weiss-Penzias ◽  
Michael S. Bank ◽  
Deana L. Clifford ◽  
Alicia Torregrosa ◽  
Belle Zheng ◽  
...  

AbstractCoastal marine atmospheric fog has recently been implicated as a potential source of ocean-derived monomethylmercury (MMHg) to coastal terrestrial ecosystems through the process of sea-to-land advection of foggy air masses followed by wet deposition. This study examined whether pumas (Puma concolor) in coastal central California, USA, and their associated food web, have elevated concentrations of MMHg, which could be indicative of their habitat being in a region that is regularly inundated with marine fog. We found that adult puma fur and fur-normalized whiskers in our marine fog-influenced study region had a mean (±SE) total Hg (THg) (a convenient surrogate for MMHg) concentration of 1544 ± 151 ng g−1 (N = 94), which was three times higher (P < 0.01) than mean THg in comparable samples from inland areas of California (492 ± 119 ng g−1, N = 18). Pumas in California eat primarily black-tailed and/or mule deer (Odocoileus hemionus), and THg in deer fur from the two regions was also significantly different (coastal 28.1 ± 2.9, N = 55, vs. inland 15.5 ± 1.5 ng g−1, N = 40). We suggest that atmospheric deposition of MMHg through fog may be contributing to this pattern, as we also observed significantly higher MMHg concentrations in lace lichen (Ramalina menziesii), a deer food and a bioindicator of atmospheric deposition, at sites with the highest fog frequencies. At these ocean-facing sites, deer samples had significantly higher THg concentrations compared to those from more inland bay-facing sites. Our results suggest that fog-borne MMHg, while likely a small fraction of Hg in all atmospheric deposition, may contribute, disproportionately, to the bioaccumulation of Hg to levels that approach toxicological thresholds in at least one apex predator. As global mercury levels increase, coastal food webs may be at risk to the toxicological effects of increased methylmercury burdens.


2015 ◽  
Vol 12 (13) ◽  
pp. 4113-4119 ◽  
Author(s):  
C. Mulder ◽  
J.-P. Hettelingh ◽  
L. Montanarella ◽  
M. R. Pasimeni ◽  
M. Posch ◽  
...  

Abstract. Long-term human interactions with the natural landscape have produced a plethora of trends and patterns of environmental disturbances across time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main drivers of pollution, affecting both freshwater and terrestrial ecosystems. We present a statistical approach for investigating the historical and geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon-to-nitrogen ratios in Europe. After the second Industrial Revolution, large swaths of land emerged characterized by different atmospheric deposition patterns caused by industrial activities or intensive agriculture. Nitrogen deposition affects soil C : N ratios in a still recognizable way despite the abatement of oxidized and reduced nitrogen emissions during the last 2 decades. Given a seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing statistical evidence for a rapid response of nature to the chronic nitrogen supply through atmospheric deposition.


1983 ◽  
Vol 40 (6) ◽  
pp. 799-806 ◽  
Author(s):  
James N. Galloway ◽  
Carl L. Schofield ◽  
Norman E. Peters ◽  
George R. Hendrey ◽  
Elmar R. Altwicker

Three watershed–lake systems of the Integrated Lake–Watershed Acidification Study (ILWAS) were investigated to determine the effects of atmospheric deposition on the chemical compositions of oligotrophic lakes in the Adirondack Mountains of New York. Using the principles of watershed mass balance and electroneutrality of solutions, the following conclusions were drawn. (1) Annually, about 90% of the NH4+ and 50% of the NO3− from atmospheric deposition were retained in the systems. (2) In the Woods system, Cl− was in steady state with respect to atmospheric deposition although both Panther and Sagamore systems had net losses, indicating watershed sources of Cl−. (3) The losses of base cations from Panther and Sagamore were substantially greater than from the Woods system, reflecting the shallow soils of the latter. (4) The concentrations of SO42− in the waters of the three systems were controlled by the atmospheric deposition of anthropogenic sulfur; in Woods and Panther, inputs (atmospheric deposition) equalled outputs (discharges from the lake outlets); in Sagamore, outputs exceeded inputs. (5) In 1978–80, concentrations of SO42− were four to five times higher than historical values. These increased concentrations had caused either decreased alkalinities of surface waters or increased concentrations of base cations (Ca2+, Mg2+, Na+, K+) or both. The former directly affects aquatic ecosystems; the latter directly affects terrestrial ecosystems because of increased rates of loss of the nutrients Ca, Mg, and K in the absence of resupply from primary weathering.


2009 ◽  
Vol 59 (11) ◽  
pp. 2287-2295 ◽  
Author(s):  
P. Sundarambal ◽  
R. Balasubramanian ◽  
P. Tkalich

In view of recurring forest fires in Southeast Asia (SEA) on a large scale and the abundant rainfall in this tropical region, atmospheric fallout of airborne particles i.e. dry atmospheric deposition (DAD) and wet atmospheric deposition (WAD) of nutrients to the ocean surface are thought to be significant. Currently, limited data sets of atmospheric deposition (AD) exist for tropical ecosystems in the region. Furthermore, there is a lack of reliable experimental data on AD of nitrogen (N) & phosphorus (P) in tropical environments. It is therefore imperative to quantify the AD of macro-nutrients, N and P species in order to estimate their impacts on aquatic and terrestrial ecosystems. In this study, field measurements of nitrite, nitrate, ammonium, total N (TN), phosphate and total P (TP) were made, in both airborne particulate matter and precipitation, from January 2006 to July 2006 in Singapore. These measurements were done to characterize and estimate the difference between DAD and WAD fluxes of N & P to coastal waters. The estimated loadings from DAD and WAD (g/m2/year) of TN were 1.011±0.441 and 7.052±4.34 and those of TP were 0.187±0.16 and 0.532±0.524, respectively. This investigation represents a baseline study to access environmental effects of AD of nutrients on the coastal aquatic ecosystem.


Tellus B ◽  
1989 ◽  
Vol 41B (3) ◽  
pp. 207-218 ◽  
Author(s):  
D. A. SCHAEFER ◽  
S. E. LINDBERG ◽  
W. A. HOFFMAN

Tellus B ◽  
1989 ◽  
Vol 41 (3) ◽  
Author(s):  
D. A. Schaefer ◽  
S. E. Lindberg ◽  
W. A. Hoffman

2017 ◽  
Vol 08 (10) ◽  
pp. 1158-1177
Author(s):  
Rosa M. Cerón ◽  
Julia G. Cerón ◽  
Manuel Muriel ◽  
Marcela Rangel ◽  
Reyna del C. Lara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document